Energiemanagement Energiezähler WA Typ EM210

CARLO GAVAZZI

- Einfache Anschlussmöglichkeit
- Entfernbare Anzeige
- Mehrzweckgehäuse: für beide Applikationsvarianten DIN-Schiene und Schalttafeleinbau
- Stromeingänge Option AV: CT 5A
- Stromeingänge Option MV: Stromsensor 333 mV (Serie CTV) oder ROG4K, Rogowskispule von Carlo Gavazzi ohne Erfordernis eines externen Integrators

- Klasse B (kWh) gemäß EN50470-3
- Klasse 1 (kWh) gemäß EN62053-21
- Klasse 2 (kvarh) gemäß EN62053-23
- Genauigkeit ±0,5 RDG (Strom/Spannung)
- Stromzähler
- Anzeige der Momentanwerte: 3 stellig
- Anzeige von Energien: 7 stellig
- Systemgrößen: W, var, PF, Hz, Phasenfolge.
- 1-Phasenmessgrößen: VLL, VLN, A, PF, THD (A,V, bis zur 15. Harmonischen)
- Messungen der Gesamtenergie kWh (importiert und exportiert); kvarh
- TRMS-Messungen von verzerrten Sinuswellen (Spannungen/Ströme)
- Eigenstromversorgung
- Abmessungen: 4-DIN Module und 72x72mm
- Schutzgrad (Vorderseite): IP40
- Entsprechend der Applikation anpassbare Anzeige und anpassbare Programmierung (Easyprog Funktion)

Produktbeschreibung

Drei-Phasen-Energiezähler mit entfernbarer vorderer LCD-Anzeigeeinheit. Die Anzeigeeinheit kann entweder als DIN-Schienen oder Schalttafeleinbau Energiezähler verwendet werden. Dieser Dreiphasen Energiezähler ist sowohl für die Messung der Wirk- als auch für Blindenergie aber auch für die Messung der wichtigsten elektrischen Netzparameter

ausgerüstet. Die Übertragung der Energiemittels Impulseausgang. Es besteht auch die Möglichkeit zur Anzeige der exportierten Wirkenergie (z. B. bei regenerierter Energie in Aufzügen oder ähnlichen Applikationen). Information harmonische Verzerrung erhältlich für die Spannungen und Ströme bis zur 15. Harmonischen. Ein Stundenzähler-Messer ist

verfügbar, um den Energieverbrauch mit den relevanten Betriebsstunden zu verknüpfen (auch im Fall von exportierter Energie). Gehäuse für DIN-Schiene mit IP40 (Vorderseite) Schutzgrad. Strommessung wird mittels externe Stromwandler, Wandler, 5A oder 333mV (Serie CTV), oder ROG4K, Rogowskispule ohne Erfordernis eines externen Integrators durchgeführt.

Die Spannungsmessung kann durch Direktanschluss oder durch den Einsatz von Spannungswandlern durchgeführt werden. EM210 ist standardmäßig mit einem Impulsausgang für die Übertragung der Wirkenergie ausgestattet. Zusätzlich ist eine 2 Adern RS485 Kommunikations-Schnittstelle als Option verfügbar.

Typenwahl

Bereichskode		Syst	tem	Stro	Stromversorgung		Optionen	
AV5:	230/400VLL AC, 5(6) A oder 1(6)A (*) (Stromwandleran- schluss) 120/230VLL AC 5(6)A oder 1(6)A (*) (Spannungs und Stromwandleran-	3:	symmetrische und unsymmetrische Last: 3-phasig, 4 Adern; 3-phasig, 3 Adern (ohne N-Anschluss); 2-phasig, 3 Adern; 1-phasig, 2 Adern	X:	Eigenstromversor- gung von 40V bis 480VAC LL, von 45 bis 65 Hz (Anschluss VL2-VL3)	X:	Keine	
MV5:	schluss) 230/400VLL AC, 0.333V (Stromsensor Serie CTV oder ROG4K Anschluss)							
MV6:	120/230VLL AC, 0.333V (VT/PT und Stromsensor Serie CTV oder ROG4K Anschluss)							
Ausg	ang 1	Aus	gang 2		er 1(6)A Bereich ist			
O:	Statischer Einzelausgang (Opto-Mosfet)	X: S:	Keine RS485 Schnittstelle	verfügbar, aber nicht EN50470-3 konform.				

Technische Daten Eingänge

Temperaturveränderung Abtastrate	≤200ppm/°C. 1600 Abtastpunkte/s bei 50Hz; 1900 Abtastpunkte/s		Messgrößen, die angeschlossen werden können an:"
	EN50470-1-3, EN62053-23	Messungen	Siehe "Liste der
Blindleistung Zusätzliche Energiefehler Bereichsüberschreitungsabhängig	Klasse 2 gemäß EN62053- 23. Startstrom: 10mA. Gemäß EN62053-21,		Anschlussklemmblock) für Spannung ein (dauernd) und Kommunikation ein Status: RX-TX (wenn RS485 Option) (blinken).
DI: II · · ·	Klasse 1 gemäß EN62053- 21.	Max Frequenz	16Hz, gemäß EN50470- 3. Grüne LED (bei
Wirkstrom Leistungsfaktor Blindenergie Wirkleistung	±(1%RDG +2 stellig). ±[0,001+1%(1,000 - "PF RDG")]. ±(2%RDG +2 stellig). Klasse B gemäß EN50470-1-3;		<3500,0 1kWh je Puls wenn VT Verhältnis durch In ≥ 3500,0
Frequenz	+1 stellig). Bereich: 45 bis 65Hz; Auflösung: ±1Hz		<350,0 0,1kWh je Puls wenn VT Verhältnis durch In ≥ 350,0
Phase-Nullleiter Phase-Phasenspannung	Im Bereich Un: ±(0,5% RDG +1 stellig). Im Bereich Un: ±(1% RDG	(Energieverbraueri) IVIVO, IVIVO	Verhältnis durch In < 35,0 0,01kWh je Puls wenn VT Verhältnis durch In ≥35,0
(bei 25°C ±5°C, r.F. ≤60%, 50Hz) Strom AV5, AV6 Modelle Strom MV5, MV6 Modelle	Von 0,002In bis 0,2In: ±(0,5% RDG +3 stellig). Von 0,2In bis Imax: ±(0,5% RDG +1 stellig). Von 0,002In bis 0,2In: ±(1% RDG +3 stellig). Von 0,2In bis Imax: ±(0,5% RDG +1 stellig).	Rote LED-Leuchte (Energieverbrauch) MV5, MV6	< 70,0; 0,1 kWh je Puls wenn CT x VT Verhältnis ≥ 70,0 < 700,0; 1 kWh je Puls wenn CT x VT Verhältnis ≥ 700,0.
Genauigkeit (Display + RS485)	6A; Un: 160 bis 240VLN (277 bis 415VLL). AV6, MV6: 120/230VLL; 6A; Un: 57,7 bis 133VLN (100 bis 230VLL). In: siehe unten, Un: siehe unten	LEDs Rote LED-Leuchte (Energieverbrauch) AV5, AV6	0,001 kWh je Puls wenn CT x VT Verhältnis <7; 0,01 kWh je Puls wenn CT x VT Verhältnis ≥ 7,0
Strombereich (MV5, MV6) Spannung (direkt oder Spannungswandler)	In: Primärstrom entspricht 0,333 V Sekundärausgang. Imax: 1,2 In (0,4V sekundär). AV5, MV5: 230/400VLL;	Max und MinAngabe	Messkapazität) überschreitet Max. Momentanmessgrößen: 999; Energien: 9 999 999. Min. Momentanmessgrößen: 0; Energien 0,00.
Strombereich (AV5, AV6)	Stromwandler können einzeln geerdet werden. In: Primärstrom entspricht 5 A Sekundärausgang. Imax: 1,2 In (6A sekundär). Der "1(6)A" Bereich ist verfügbar, aber nicht EN50470-3 konform.	Anzeige von Momentanmessgrößen Energien Überlast-Status EEE-Angabe,	3 stellig. Insgesamt aufgenommen: 5+2, 6+1 oder 7- stellig wenn der gemessene Wert die "Kontinuierliche Ein- gangs-Überlast" (maximale
Nominaleingang Stromtyp Nicht isoliert (N	Systemtyp: 3 Nebenschlusseingänge). Hinweis: Die externen	Тур	stellig + 3 stellig 2. Linie: 3 stellig LCD, Höhe 7mm.

Technische Daten Eingänge (Fortsetzung)

Crestfaktor	AV5, AV6: ≤3 (15A max. Spitzenstrom). MV5, MV6: 1,414 @ Imax (Imax=1,2 In = 0,4V). In jedem Fall:	Stromeingangsimpedanz AV5, AV6 MV5, MV6	< 0,3VA >100 kΩ
Überlaststrom Kontinuierlich Für 500ms Überlastspannung Kontinuierlich Für 500ms	Vpeak max = 0,565V. 1,2 In, bei 50Hz. 20 In, bei 50Hz. 1,2 Un 2 Un	Spannungs-Eingangsimpedanz Eigenstromversorgung Frequenz Tastenfeld	Leistungsaufnahme: < 2VA 45 bis 65 Hz. Zwei Drucktasten für die Messgrößenwahl und die Programmierung der Geräteparameter.

Ausgangsspezifikationen

Impulsausgang		Adressen	247, wählbar mit dem
Anzahl der Ausgänge	1		Tastenfeld auf der
Тур	Programmierbar von 0,01		Vorderseite
•	bis 9,99 kWh pro Impuls.	Protokoll	MODBUS/JBUS (RTU)
	Ausgang verbindbar mit	Daten (bidirektional)	
	Stromzähler (+kWh)	Dynamisch (nur Lesen)	System- und
Impulslänge	T _{oee} ≥120ms, gemäß		Phasenmessgrößen:
	EN62052-31.		siehe Tabelle "Liste der
	T _{ON} wählbar (30 ms oder 100		Messgrößen"
	ms) gemäß EN62053-31	Statisch (Lesen und Schreiben)	Alle
Ausgang	Statisch: Opto-Mosfet.		Konfigurationsparameter.
Laden	V _{ON} 2,5 VAC/DC max. 70	Datenformat	1 Start-bit, 8 Daten-bits,
	mA, V _{OFF} 260 VAC/DC max.		und gerade Parität, 1 oder
Isolierung	Durch Optokoppler,		2 Stop-bits.
	4000 VRMS Ausgang	Baudrate 9.6, 19.2, 38.4	, 57.6, 115.2 kbps.
	Eingangsmessungen.	Leistungsfähigkeit des	
RS485		Treibereingangs	1/5 Einheitsladung.
Тур	Mehrpunkt, bidirektional		Maximal Geräte 160 am
	(statische und dynamische		gleichen Bus.
	Messgrößen)	Isolierung	Durch Optokoppler,
Anschlüsse	2 Adern. Höchstabstand		4000 VRMS Ausgang zu
	1000m, Terminierung direkt		Messeingang.
	am Gerät.		

Software-Funktionen

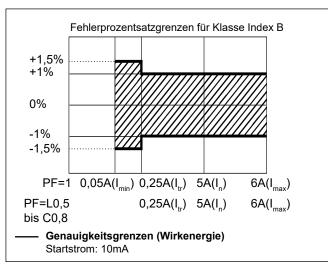
Passwort	Nummerncode mit max. 3	Stromwandler (AV5, AV6)	1,0 bis 99,9 / 100 bis 999
	Stellen; 2 Sicherheitsstufen		Max. Wert für CT x VT ist
	für die Programmierdaten:		bei Modell AV5 ein Wert
1. Ebene	Passwort "0", kein Schutz;		von 1187 (Option X),
2. Ebene	Passwort von 1 bis 999,		Modell AV6 ein Wert von
	alle Daten sind geschützt		2421 (Option X).
Programmierblock	Über Trimmer (Rückseite		Primärstrom 10 bis 10000.
	des Displaymoduls),	Anzeigen	Bis zu 3 Variablen
	es ist möglich den		pro Seite. Es sind
	Zugang zu allen		6 verschiedene
	Konfigurationsparameter zu		Variableneinstellungen
	sperren.		verfügbar.
Systemauswahl		Zurücksetzen	Durch die vorderen
3-Ph.n System mit			Drucktasten:
unsymmetrische Last	3-Phasen (4 Adern)		Gesamtenergien (kWh,
,	3-Phasen (3 Adern) ohne		kvarh).
	Nullleiteranschluss.	Einfache Anschlussfunktion	
2 Dh 1 Systom mit		(Easy Connection)	Erkennung und Anzeige
3-Ph.1 System mit	2 Dhasan (2 Adam)		der Phasenfolge. Für alle
symmetrischer Last	3-Phasen (3 Adern)1- Strom- und 3-Ph-Ph		Anzeigenfunktionen außer
			"D" und "E" sind sowohl die
	Spannungsmessung. • 3-Phasen (4 Adern)		Strom-, Leistung-, als auch
	1- Strom- und 3-Ph-N		die Energiemessungen
			von der Stromrichtung
2 Dh. Systom	Spannungsmessung. 2-Phasen (3 Adern)		unabhängig.
2-Ph. System 1-Ph. System	1-Phasen (2 Adern)		
Wandler-Verhältnis	1-Pilaseii (2 Aueiii)		
VT (PT)-Verhältnis	1,0 bis 99,9 / 100 bis 999		
vi (i i) voillaitiis	1,0 510 00,07 100 513 000		

Allgemeine technische Daten

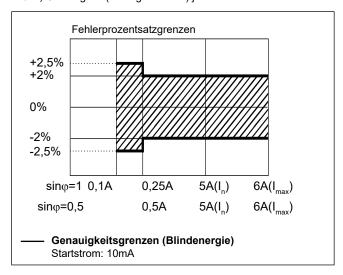
Betriebstemperatur	-25°C bis +55°C (-13°F	Störfestigkeit gegen		
	bis 131°F) (r.F. von 0 bis	leitungsgeführte Störungen	10V/m von 150kHz bis	
	90% nicht kondensierend)	en.	80Mhz	
	gemäß EN62053-21 und	Überspannung	Am Strom- und Eingangs-	
	EN62053-23.	E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	spannungsmesskreis: 6kV;	
Lagertemperatur	-30°C bis +70°C (-22°F	Funkentstörung	Gemäß CISPR 22	
	bis 158°F) (r.F. < 90%	Standardkonformität		
	nicht kondensierend)	Sicherheit	EC60664, IEC61010-1	
	gemäß EN62053-21 und		EN60664, EN61010-1	
	EN62053-23).		EN62052-11	
Überspannungs-Kategorie KI. III		Messtechnik	EN62053-21, EN62053-23,	
Isolierung (für 1 Minute)	4000 VRMS zwischen	II	EN50470-3	
,	Eingangsmessung und	Impulsausgang	DIN43864, IEC62053-31	
	Digitalausgang.	Zulassungen Anschlüsse	CE, cULus listed (nur AV). Schraubanschluss	
Dielektrische Stärke	4000VAC RMS für 1 Minu-	Kabelguerschnitt	2,4 x 3,5 mm	
	te.	Rabeiquerschillt	Min./Max.	
			Schraubenanzugsmoment:	
Rauschdrückungsverhältnis	400 ID 401: 0011		0,4 Nm / 0,8 Nm	
CMRR	100 dB, 48 bis 62 Hz	Gehäuse	0,114117 0,014111	
EMV	Gemäß EN62052-11	Abmessungen (BxHxT)	72 x 72 x 65 mm	
Elektrostatische Entladungen	15kV Luftentladung.	Gehäusematerial	Noryl, PA66	
Störfestigkeit gegen			selbstlöschend: UL 94 V-0	
elektromagnetische Felder	Test mit Strom: 10V/M bei	Montage	Tafel und DIN-Schiene	
	80 bis 2000MHz; Test ohne	Schutzgrad		
	Strom: 30V/m von 80 bis	Front	IP40	
Bündelstörungen	2000MHz; Am Strom- und Eingangs-	Schraubklemmen	IP20	
Dundelstorungen	spannungsmesskreis: 4kV	Gewicht	Ca. 400g (inkl.	
			Verpackung)	

Spezifikationen der Stromversorgung

Eigenstromversorgung

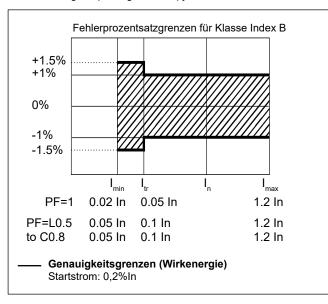

von 40 bis 480VAC (45-65Hz). Über Eingang "VL2" und "VL3"

Leistungsaufnahme

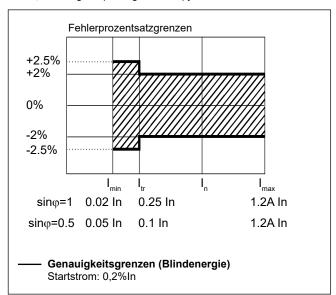

≤2VA/1W

Genauigkeit AV5, AV6 (Gemäß EN50470-3 und EN62053-23)

kWh, Genauigkeit (Anzeigeendwert) je nach Strom



kvarh, Genauigkeit (Anzeigeendwert) je nach Strom



Genauigkeit MV5, MV6 (Gemäß EN50470-3 und EN62053-23)

kWh, Genauigkeit (Anzeigeendwert) je nach Strom

kvarh, Genauigkeit (Anzeigeendwert) je nach Strom

Isolation zwischen Ein- und Ausgängen

	Messeingang	Opto-Mosfet Ausgang	Kommunikationsport	Eigenstromversor- gung
Messeingänge	-	4kV	4kV	0kV
Opto-Mosfet Ausgang	4kV	-	-	4kV
Kommunikationsport	4kV	-	-	4kV
Eigenstromversor- gung	0kV	4kV	4kV	-

HINWEIS: Alle Modelle müssen an externe Stromwandler angeschlossen werden.

Verwendete Kalkulationsformeln

Phasenvariablen

Systemvariablen

Dreiphasen-Leistungsfaktor

 $V_{\Sigma} = \frac{V_1 + V_2 + V_3}{3} \cdot \sqrt{3}$

$$\cos \varphi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}}$$

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_{i}^{2}}$$

Energiemessung

$$W_1 = \frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_i \cdot (A_1)_i$$

Momentanwert der Wirkleistung

$$k \operatorname{var} hi = \int_{t_1}^{t_2} Qi(t)dt \cong \Delta t \sum_{n=1}^{n_2} Qnj$$

 $kWhi = \int_{t_1}^{t_2} Pi(t)dt \cong \Delta t \sum_{i=1}^{n_2} Pnj$

Momentanwert des Leistungsfaktors

$$\cos \varphi_1 = \frac{W_1}{VA_1}$$

$$A_1 = \sqrt{\frac{1}{n} \cdot \sum_{1}^{n} (A_1)_i^2}$$

Momentane Scheinleistung

$$VA_1 = V_{1N} \cdot A_1$$

$$W_{\Sigma} = W_1 + W_2 + W_3$$

Symbolbeschreibung:

i= berücksichtigte Phase (L1, L2 oder L3)P= Wirkleistung; Q= Blindenergie;

t1, t2 = Anfang- und Endzeitpunkte der Verbrauchaufnahme; n= Zeiteinheit;
 ∆ t= Intervall zwischen zwei aufeinander folgende Leistungsverbrauche;

n1, n2 = Anfang und Ende der separatenZeitpunkte für die Verbrauchaufnahme

Momentane Blindenergie

$$var_1 = \sqrt{(VA_1)^2 - (W_1)^2}$$

Dreiphasen-Scheinleistung

$$VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + \text{var}_{\Sigma}^2}$$

Liste der Messgrößen, die angeschlossen werden können an:

- RS485 Kommunikationsport
- Impulsausgänge (nur "Energien")

Nr.	Messgröße	1-Ph. Sys.	2-Ph. Sys.	3-Ph. 4 Adern symmet. System	3-Ph. 4 Adern asymmet. System	3-Ph. 3 Adern symmet. System	3-Ph. 3 Adern asymmet. System	Hinweise
1	kWh	х	х	х	х	х	х	Gesamt (2)
2	kvarh	х	х	х	х	х	х	Gesamt (3)
3	V L-N sys (1)	0	х	х	х	х	х	sys=System (∑)
4	V L1	x	x	х	х	х	х	
5	V L2	0	x	х	х	х	х	
6	V L3	0	0	х	х	х	х	
7	V L-L sys (1)	0	х	х	х	х	х	sys=System (∑)
8	V L1-2	0	х	х	х	x	х	
9	V L2-3	0	0	х	х	х	х	
10	V L3-1	0	0	х	х	х	х	
11	AL1	х	х	х	х	х	х	
12	AL2	0	х	х	х	х	х	
13	AL3	0	0	х	х	х	х	
14	VA sys (1)	х	х	х	х	х	х	sys=System (∑)
15	VA L1 (1)	х	х	х	х	х	х	
16	VA L2 (1)	0	х	х	х	х	х	
17	VA L3 (1)	0	0	х	х	х	х	
18	var sys	х	x	х	х	х	х	sys=System (∑)
19	var L1 (1)	х	х	х	х	х	х	
20	var L2 (1)	0	х	х	х	х	х	
21	var L3 (1)	0	0	х	х	х	х	
22	W sys	х	х	х	х	х	х	sys=System (∑)
23	W L1 (1)	х	х	х	х	х	х	
24	W L2 (1)	0	х	х	х	х	х	
25	W L3 (1)	0	0	х	х	х	х	
26	PF sys	х	x	х	х	х	х	sys=System (∑)
27	PF L1	х	x	х	х	х	х	
28	PF L2	0	x	х	х	х	х	
29	PF L3	0	0	х	х	x	x	
30	Hz	x	x	х	х	x	x	
31	Phasensequenz	0	0	х	х	x	x	
32	THD VL1N	Х	Х	Х	Х	0	0	nur wenn THD aktiviert
33	THD VL2N	0	Х	Х	Х	0	0	nur wenn THD aktiviert
34	THD VL3N	0	0	Х	Х	0	0	nur wenn THD aktiviert
35	THD A L1	Х	Х	Х	Х	Х	Х	nur wenn THD aktiviert
36	THD A L2	0	Х	Х	Х	Х	Х	nur wenn THD aktiviert
37	THD A L3	0	0	Х	Х	Х	Х	nur wenn THD aktiviert
38	THD V L1-2	0	Х	Х	Х	Х	Х	nur wenn THD aktiviert
39	THD V L2-3	0	0	Х	Х	Х	Х	nur wenn THD aktiviert
40	THD V L3-1	0	0	Х	Х	Х	Х	nur wenn THD aktiviert
41	An	0	Х	0	Х	0	0	

⁽x) = verfügbar

⁽o) = nicht verfügbar (Nullangabe auf der Anzeige)

^{(1) =} Messgröße nur mit serieller Kommunikations-Schnittstelle RS485 verfügbar

^{(2) =} auch kWh- (exportiert) mit Applikation E (siehe nächste Tabelle)

^{(3) =} Summe (nicht algebraisch) von kvarh, importiert und exportiert mit Applikation F (siehe nächste Tabelle)

Anzeigenseiten

Nr.	1. Messgröße (1. Halbzeile)	2. Messgröße (2. Halbzeile)	3. Messgröße (2. Zeile)	Hinweis	Applika	ationen				
					Α	В	С	D	E	F
		Phasensequenz		Das Phasenfolgensymbol erscheint nur wenn eine falsche Phasenfolge auftritt	х	х	х	х	х	х
1	Gesan	nt kWh	W sys		х	х	х	х	х	х
1b	Gesamt	kWh (-)	"NEG"	Abgegebene Wirkenergie					+	
2	Gesam	t kvarh	kvar sys			+	+	+	+	Т
3		PF sys	Hz	Angabe von C, -C, L, -L je nach Quadrant		х	х	x	х	x
4	PF L1	PF L2	PF L3	Angabe von C, -C, L, -L je nach Quadrant			х	х	х	x
5	A L1	A L2	AL3				х	х	х	х
6	V L1-2	V L2-3	V L3-1				х	х	х	
7	V L1	V L2	V L3				х	х		
8	"thd"	"L1"	THD VL1-N			x	x	x	x	x
9	"thd"	"L2"	THD VL2-N			х	x	x	x	x
10	"thd"	"L3"	THD VL3-N			х	х	х	х	х
11	"thd"	"L1"	THD A L1			х	х	х	х	х
12	"thd"	"L2"	THD A L2			х	х	х	х	х
13	"thd"	"L3"	THD A L3			х	х	х	х	x
14	"thd"	"L1"	THD VL1-2			х	х	х	х	х
15	"thd"	"L2"	THD VL2-3			x	х	х	х	x
16	"thd"	"L3"	THD VL3-1			х	х	x	x	x
17	"A n"		An			х	х	x	x	x
18	"Betriebsstunden"(rel. zu kWh+)		h				х	х	х	х
19	"Betriebsstunden"(rel. zu kWh-)		h-						х	

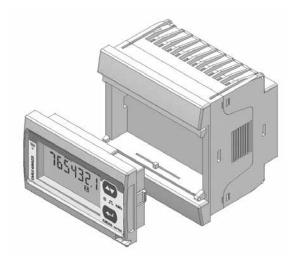
Hinweise: x = verfügbar

+ = es wird nur die positive kvarh gemessen (kvar sys ist die algebraische Summe der Phasen-kvar)

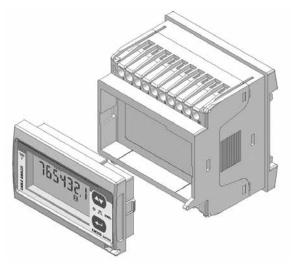
T = die positive und negative kvarh werden summiert und mit demselben kvarh-Messer gemessen (kvarsys ist die Summe der absoluten Werte jeder Phasen-kvar). Die Phasen kvar werden mit dem richtigen Vorzeichen angezeigt.

Zusätzliche verfügbare Informationen auf dem Display

Тур	1. Zeile	2. Zeile	Hinweis
Zählerinformation 1	Y. 2007	r.A0	Herstellungsjahr und Firmware-Release
Zählerinformation 2	ation 2 Wert LEd (kWh) KWh pro Impuls der LED		KWh pro Impuls der LED
Zählerinformation 3	SYS [3P.n]	Wert	Systemtyp und Anschlusstyp
Zählerinformation 4	Ct rAt.	Wert	Stromwandlerverhältnis
Zählerinformation 5	Ut rAt.	Wert	Spannungswandler-Verhältnis
Zählerinformation 6	PuLSE (kWh)	Wert	Pulsausgang: kWh pro Impuls
Zählerinformation 7	Hinzufügen	Wert	Serielle Kommunikationsadresse
Zählerinformation 8	Wert	Sn	Sekundäradresse (M-Bus-Protokoll)

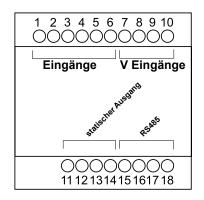

Liste der wählbaren Applikationen

	Beschreibung	Hinweise
Α	Wirkleistungszähler	Wirkenergiemessung mit einigen kleineren Parametern
В	Wirk- und Blindenergiezähler	Wirk- und Blindenergiemessung mit einigen kleineren Parametern
С	Alle Variablen	Alle Variablen können angezeigt werden (Standard-Auswahl)
D	Alle Variablen +	Alle Variablen können angezeigt werden +
E	Alle Variablen +	Alle Variablen mit exportiertem (negativem) kWh-Messer
F	Alle Variablen	Alle Variablen mit importierten und exportierten kWh-Messern

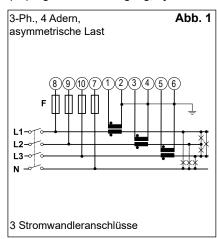

Hinweise:

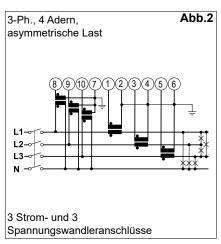
+ Nur in "D" und "E" Anwendungen die tatsächliche Richtung des Stroms berücksichtigt wird.

Ein Messgerät mit doppelter Montagemöglichkeit

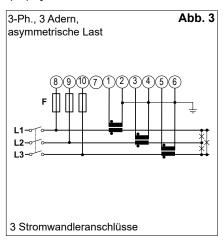


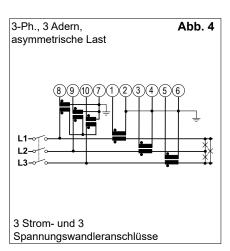
Durch die entfernbare patentierte Anzeige kann dasselbe Messgerät entweder als Schalttafelzähler oder ...

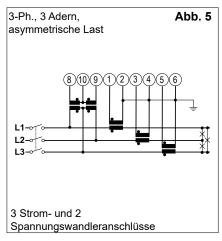


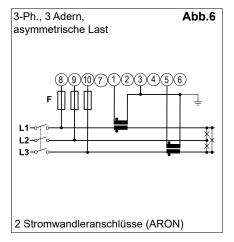

... ein auf DIN-Schiene montierter Zähler konfiguriert werden.

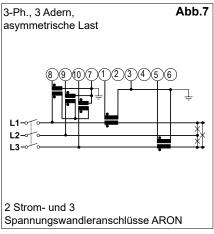
Schaltpläne

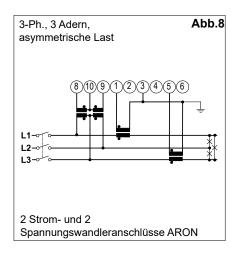


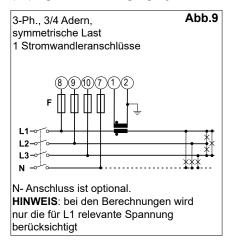

(6A) Eigenstromversorgung, Systemwahl: 3P.n

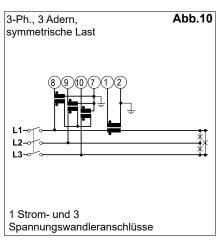


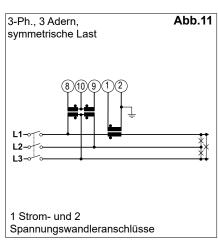



(6A) Systemwahl: 3P

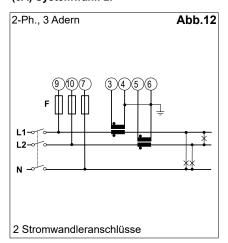


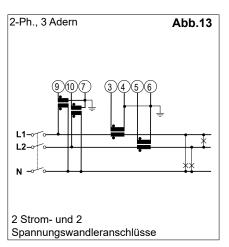


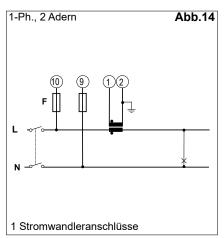




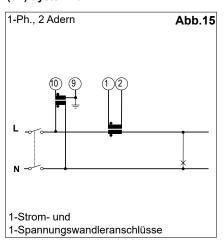
Schaltpläne

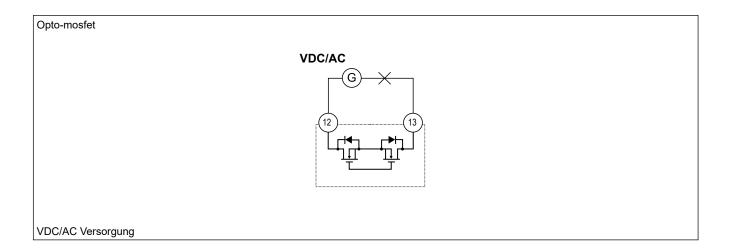

(6A) Eigenstromversorgung, Systemwahl: 3P.1

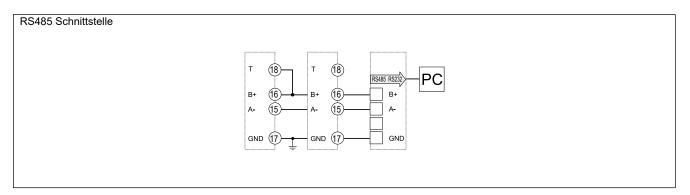




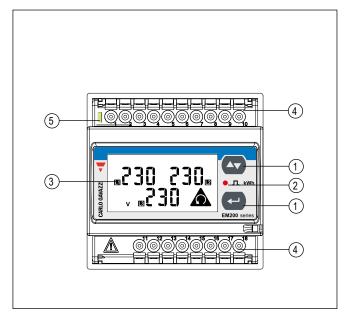
(6A) Systemwahl: 2P




(6A) Systemwahl: 1P


(6A) Systemwahl: 1P

Schaltbild für statischen Ausgang



Schaltbild für Schnittstelle RS485

RS485 HINWEIS: mit RS485 ausgestattete Systeme werden wie im Bild oben ausgeführt. Der Abschluss des seriellen Netzwerkes wird nur auf dem letzten Netzmessgerät durch einen Jumper zwischen (B+) und (T) ausgeführt.

Frontpanel-Beschreibung

1. Drucktasten

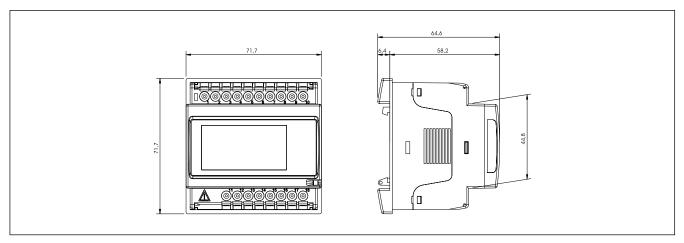
Zum Programmieren der Konfigurationsparameter und zum Selektieren der Messgrößen auf der Anzeige.

2. Pulsausgang LED

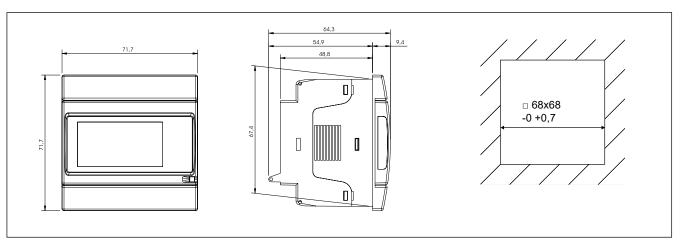
Die rote LED-Leuchte blinkt proportional zur gemessenen Energie.

3. Anzeige

LCD-Anzeige mit alphanumerischen Angaben für die Anzeige aller gemessenen Messgrößen.


4. Anschlüsse

Schraubklemmenblöcke für Geräteanschlussleitungen.


5. LED Grün

Leuchtet, wenn Versorgungsspannung verfügbar.

Abmessungen (DIN Konfiguration)

Abmessungen und Ausschnitt (72x72 Schalttafeneinbau)

