





## **Guidelines**

Long-range wireless metering solutions for public and private networks

# **Controls**

## Long-range wireless metering



## Our solutions for public and private networks



## Purposes

The purposes of this document are:

- to give an overview to LoRa® and LoRaWAN®
- to present the Carlo Gavazzi solutions featuring LoRaWAN® protocol for Public (LoRaWAN®) and Private (UWP 3.0) networks.

System integrators and ESCOs looking for submetering and energy monitoring solutions will benefit by reading this document. In fact, it is meant for those companies that aim at:

- defining a process to collect metering data from the field data in a secure, economic and automatic way
- limiting the commissioning impact for both new and retrofit installations.

LoRaWAN® is designed to strengthen the standard wireless technologies battery lifetime, signal capacity, communication range, and to reduce the deployment and operating costs: everything, ensuring the data security.

## Challenge

The monitoring of electricity, gas and water consumptions, carried out for sub-metering or energy efficiency purposes, is often a critical activity due to the difficulties in gathering data in a secure, automatic and economic way. Typically, the aim is to gather data from a huge number of meters on a wide area and concentrate these data in a single point.

There are many technologies that permit automizing this process but these technologies are often not feasible because of:

- · the operating and commissioning costs
- the constraints on the implementation (in particular, in the retrofit applications where it is not possible to build a network facility).

In these cases, a wireless solution would be the ideal option. However, the typically used technologies are limited in terms of signal range or disadvantageous in terms of economy since they require a mobile telephony contract for each measuring point. Moreover, in the urban areas the situation is particularly complicated due to the standards restrictions relating to the band occupation and interferences with other devices.

The LoRa®-based wireless technology has been implemented to transmit small amounts of data over very long distances (up to 10 km) in a secure and protected way, by using an innovative signal modulation technique. The user can install both the transceivers (end-devices) and the receiver (gateway) without any permission or annual fee. It is, therefore, the optimal solution for the previously described applications.

### Main features

- UWPA is an endpoint adapter that provides a long-range wireless communication and a LoRaWAN® communication to RS485 Carlo Gavazzi meters.
- UWPM is a master concentrator that permits UWP 3.0 to gather data from multiple UWPA via a long-range wireless communication.



## Discovering LoRa® and LoRaWAN®



### LoRa® and LoRaWAN®

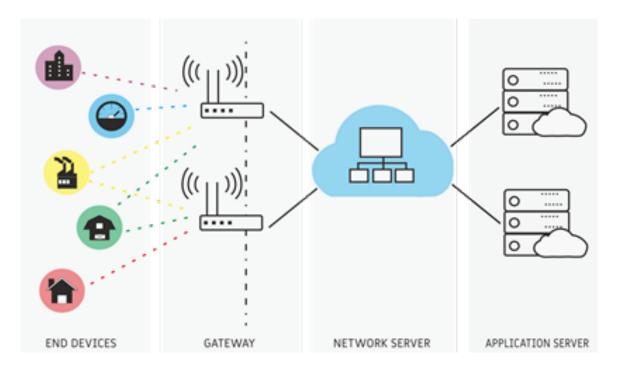
LoRa® (short of Long Range) is a wireless transmission technology based on a spread-spectrum modulation technique derived from the CSS (Chirp Spread Spectrum) technology.

Used worldwide for IoT (Internet of Things) networks, LoRa® features:

- · Low power operation;
- · Low data rate (50 kbps max);
- · Long communication range (up to 5-10 km);
- · Robustness against interferences.

LoRaWAN® is an LPWAN (Low Power, Wide Area Networking) protocol based on LoRa® technology. Designed to wirelessly connect devices ('Things') to the Internet, the LoRaWAN® protocol leverages the unlicensed radio spectrum in the ISM (Industrial, Scientific and Medical) band. The specification defines the device-to-infrastructure of LoRa® physicallayer parameters and the LoRaWAN® protocol, providing interoperability between devices.

The LoRa Alliance™, a non-profit association, drives the standardization and global harmonization of the LoRaWAN® protocol. The LoRaWAN® protocol meets the key requirements of IoT such as bi-directional communication and end-toend security.




### LoRaWAN® advantages

| Low cost.      | LoRa® reduces costs in three ways: Infrastructure investment Operating expenses End-node sensors                         |
|----------------|--------------------------------------------------------------------------------------------------------------------------|
| Standardized.  | Improved global interoperability speeds adoption and roll out of LoRaWAN® networks and IoT applications.                 |
| Long range.    | Single base station provides deep penetration in dense urban/indoor regions, plus connects rural areas up to 10 km away. |
| Low power.     | Protocol designed specifically for low power consumption.                                                                |
| Security.      | Embedded end-to-end AES128 encryption.                                                                                   |
| High capacity. | Supports millions of messages per base station, ideal for public network operators serving many customers.               |



### LoRaWAN® architecture



### **End Device**

An end device (also referred to as end node) is the sensor or the measuring device that transmits data wirelessly. These devices are divided into three different classes (A, B and C), but most of end devices on the market are class A. It means that they:

- transmit data (uplink) according to their configuration, typically at fixed intervals or when a determined condition occurs
- can receive a message in downlink (for example, a clock synchronization) during the time period just after the transmission. Some examples of end device are:
- temperature sensors
- · electricity, water or gas meters
- · Carpark sensors.

#### Gateway

Gateways are devices that receive all the LoRa® data packet sent by the devices within their own range. Those data are then forwarded to the network server in a transparent manner, regardless of whether or not the devices are authenticated within the network and notwithstanding that the same signal has been received by another gateway.

#### **Network Server**

After having removed the messages that are duplicated or that come from end devices not belonging to the network, the network server has:

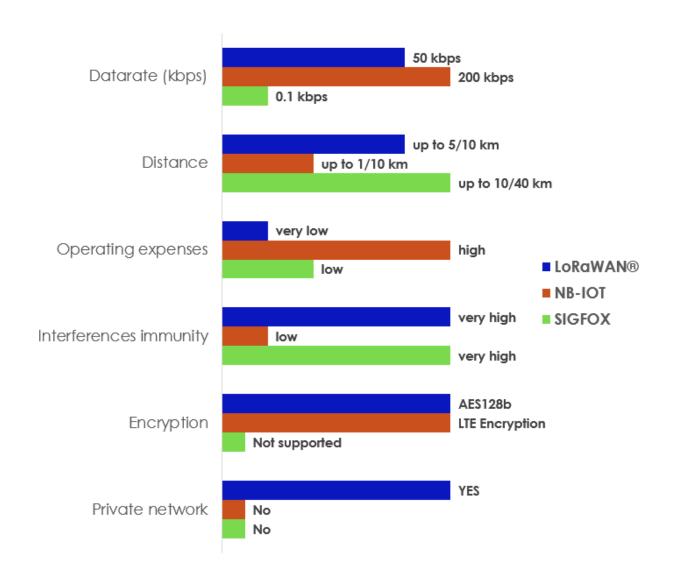
- · to forward the messages to the correct end application
- · to manage the communications in downlink.

### Application Server

An application server is the software framework responsible for:

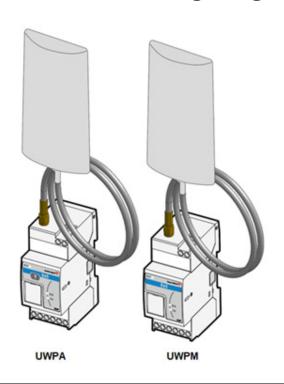
- the handling of join-request
- · the handling and encryption of application payloads.

It provides both facilities to create web applications and a server environment to run them.




## **Comparing wireless technologies**

|                                     | Advantages                                                             | Disadvantages                                                                   |
|-------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| LOCAL AND PERSONAL AREA<br>NETWORKS | Very low operating expenses                                            | Short range communication Bluetooth: 10 m Zigbee: 10 m / 100 m max. Wi-Fi: 10 m |
| WEI Z                               | High data rate Bluetooth: 1 Mbps Zigbee: 250 kbps Wi-Fi: 11 Mbps       | Frequency<br>2.4 GHz                                                            |
| LPWAN NETWORK                       | <b>Wide area coverage</b><br>Urban: 5 km<br>Rural: 10 km               |                                                                                 |
| LoRaWAN                             | Unlicensed ISM bands                                                   | Low data rate                                                                   |
|                                     | Very low operating expenses (no sim cards or annual fees)              |                                                                                 |
| cellular networks                   | Wide area coverage<br>3G: 35 km<br>4G: 200 km<br>5G: <15 km            | Sim card costs and high annual fees                                             |
|                                     | High data rate<br>3G: 144 kbps-2 Mbps<br>4G: 3-10 Mbps<br>5G: 1 Gbps > | Frequency<br>3G: 1.6-2.0 GHz<br>4G: 2-8 GHz<br>5G: 3-300 GHz                    |




## Low Power Wide Area (LPWAN) technologies





## Carlo Gavazzi long-range wireless solutions





#### **Benefits**

Easy and fast configuration. Via free software (UCS). Easy commissioning and diagnostics. Thanks to the UCS software and the embedded testing push button.

Security. Embedded end-to-end AES128 encryption and password protected configuration.

Reliable communication. Thanks to the high-performance antenna, interferences/obstacles immunity and downlink server acknowledge.

Compatibility. It permits interfacing Carlo Gavazzi meters with standard third-party LoRaWAN® networks or with the UWP 3.0 platform (in the private network solution).



### Description

Carlo Gavazzi has developed a LoRa®-based solution that permits creating a wireless system gathering data from Carlo Gavazzi meters.

The solution consists of two devices:

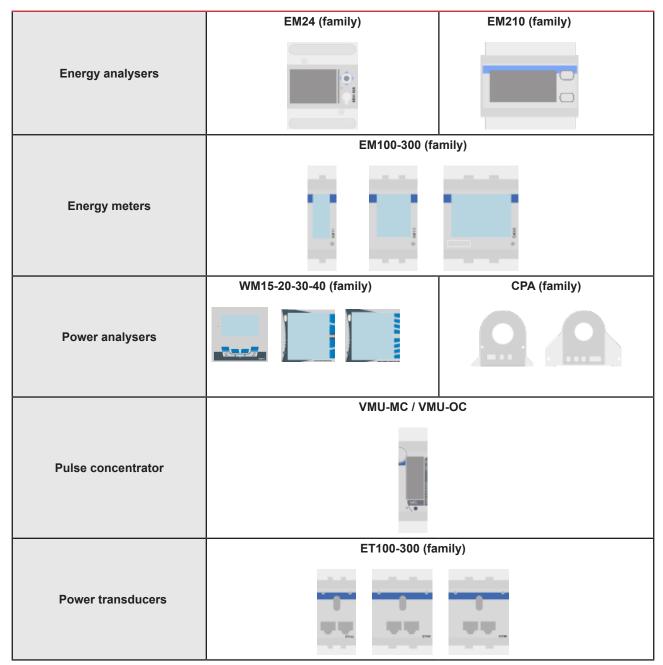
- · UWPA is an endpoint adapter that provides a long-range wireless communication and a LoRaWAN® communication to RS485 Carlo Gavazzi meters.
- UWPM is a master concentrator that permits UWP 3.0 to gather data from multiple UWPA via a long-range wireless communication.

It is necessary:

- a UWPA for integrating a Carlo Gavazzi meter into an existing LoRaWAN® network;
- Both UWPM and UWPA for creating a wireless network made of Carlo Gavazzi devices only, by joining Carlo Gavazzi meters and the UWP 3.0 universal gateway and controller.



### **Applications**


Energy efficiency monitoring and energy cost allocation, sub-metering in large buildings, big facilities, farms and city areas are the best use cases for long range wireless Carlo Gavazzi systems. Thanks to long communication range, security and robustness, wireless networks can be easily set-up, without the need of buying SIM cards or setting up expensive mobile networks.

#### Cost allocation and energy efficiency (Smart City)

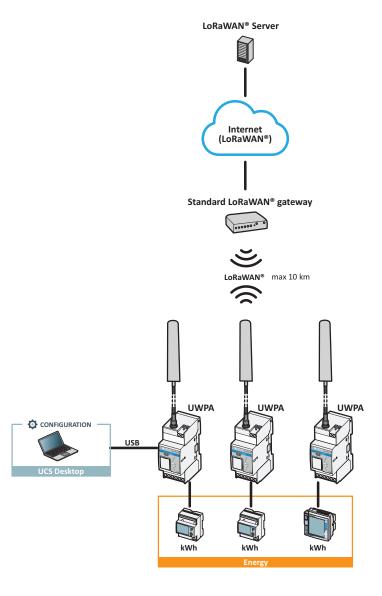
Whenever the user deals with a project focused on sub-metering or cost allocation, or in the energy efficiency monitoring realm, the need for minimizing the TCO (total cost of ownership) is always triggered on. Carlo Gavazzi long-range wireless solution helps fitting this scenario.



## Carlo Gavazzi compatible components



Note: It is possible to connect one Carlo Gavazzi device to each UWPA.




## Public (LoRaWAN®) networks

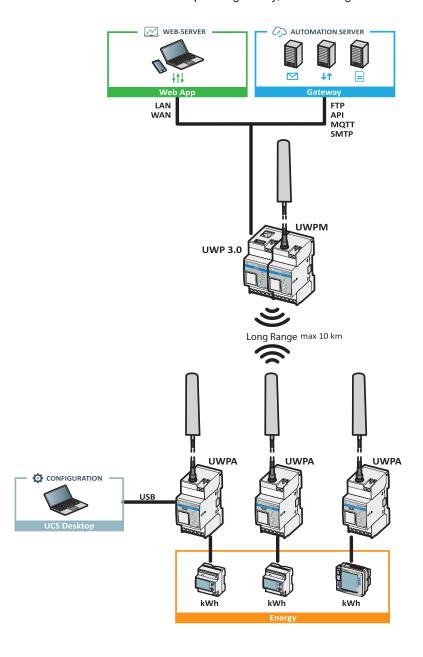


## Description

The LoRaWAN®-based device communicates with a gateway part of a public infrastructure (for example, utility city network).



## Why should I choose the public (open) network solution?


If you need to link your meters to an existing public or private LoRaWAN® network, via an existing LoRa®-based gateway.



## Private (UWP 3.0) networks

## Description

The long-range wireless device communicates with a compatible gateway, both working in the free ISM band.



## Why should I choose the private (UWP) network solution?

If you need to setup your own independent long-range wireless network in the free unlicensed ISM band.

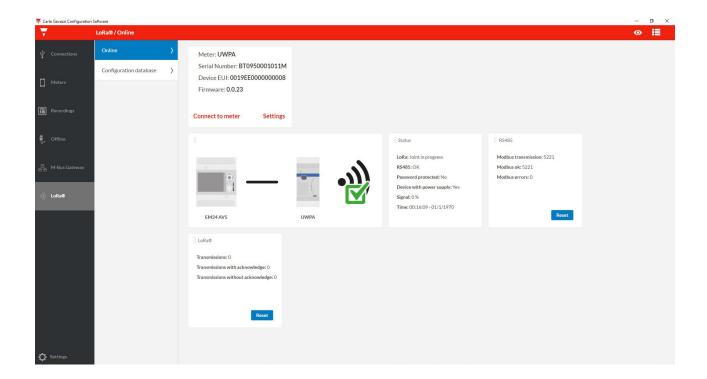


## **Integration of UWP 3.0**



## **Description**

UWP 3.0 is a gateway that:


- · Permits monitoring the devices connected by means of different buses and communication protocols
- · Includes a web server that permits displaying charts and real time data
- Permits exchanging data locally or remotely by means of standard Internet protocols.

Thanks to UWPM - a master concentrator - UWP 3.0 is able to gather data from multiple UWPAs. Those UWPAs transmit the data gathered from Carlo Gavazzi meters via LoRa®-based wireless communication.

The integration is highly easy and intuitive since it is enough to import into the UWP 3.0 configuration a unique file generated by means of UCS software containing all the information about the configured UWPAs.



## **Configuration software (UCS)**



## Main features

- · Free software, compatible with Windows® PCs
- · Intuitive user interface
- The same software for configuring UWPA and Carlo Gavazzi meters
- UWPA password management for protecting your LoRaWAN® network
- · Configurations database for helping system integrators
- · Real time diagnostics and data logging
- · csv/xlsx file export of devices for easy integration in third-party systems
- File export of devices for automatic integration in UWP 3.0
- · Export of .csv or Excel files from the configured devices list for an easy integration into a LoRaWAN® network
- Export of the configured devices file for the UWP network to import into UWP 3.0.



## Conclusion

The new long-range wireless technologies are the ideal solution for private networks or city-wide public networks where small amount of data must be transmitted by multiple devices and the total cost of ownership (TCO) of the system must be kept as low as possible.

The Carlo Gavazzi solution permits creating a long-range wireless network to gather data from Carlo Gavazzi meters.

The most critical factors of our solution are:

- Communication range (up to 10 km)
- · Robustness to interference (immunity)
- Network security (AES 128 encryption)
- Two-way communication (acknowledge and clock synchronization)
- · Variety of applications served (public and private).

This article is aimed to clarify the scope of LoRaWAN® by exploring the limits of the technology and describing the Carlo Gavazzi solution.

## **Disclaimer**

LoRa® and LoRaWAN® are registered trademarks of LoRa AllianceTM. LoRa AllianceTM is hereinafter referred as COMPANY. Carlo Gavazzi has no commercial relationship with COMPANY. CARLO GAVAZZI MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION ON THIS DOCUMENT. This CONTENT is provided "as-is." Information and views expressed in this document, including URLs and other Internet website references, may change without notice. This document does not provide you with any legal rights to any intellectual property in any Carlo Gavazzi or COMPANY's product. You may copy and use this document for your internal, reference purposes only.



## **Additional links**

| Document                     | Where to find it                                           |
|------------------------------|------------------------------------------------------------|
| UWP 3.0 - Instruction manual | www.productselection.net/MANUALS/UK/uwp3.0_im.pdf          |
| UWP 3.0 - Data sheet         | www.productselection.net/PDF/UK/uwp3.0_ds.pdf              |
| UWPA, UWPM - Data sheet      | www.productselection.net/PDF/UK/UWPA-UWPM_DS.pdf           |
| UWPA - Instruction manual    | www.productselection.net/MANUALS/UK/UWPA_IM.pdf            |
| UWPM - Instruction manual    | www.productselection.net/MANUALS/UK/UWPM_IM.pdf            |
| UWP 3.0 - How to order       | www.productselection.net/DOCUMENT/UK/UWP3_how_to_order.pdf |
| Our product selection        | www.productselection.net                                   |



## **CONTACTS**

## **CARLO GAVAZZI CONTROLS SpA**

Via Safforze 8 32100 Belluno Italy

Phone: +39 0437355811 Fax: +39 0437355880

Copyright © 2019, CARLO GAVAZZI Controls SpA

All rights reserved in all countries. CARLO GAVAZZI Controls SpA reserves the right to apply modifications or make improvements to the relative documentation without the obligation of advance notice.