RM₁D

Relais statiques sur CC

Bénéfices

- Sortie mosfet à basse dissipation de puissance
- Courant de sortie maximum 100 ACC jusqu'à 60 VCC
- · Courant de sortie maximum de 50 ACC jusqu'à 200 VCC
- · Courant de sortie maximum de 10 ACC jusqu'à 500 VCC
- Fréquence de commutation jusqu'à 1000 Hz
- Plage de tension de commande 4-32 VCC
- LED pour indication de présence de commande
- Capot se protection clipsable IP 20
- Bornes levantes
- · Boîtier libre de toute résine d'encapsulage

Description

La série RM1D vient étendre la gamme des solutions de relais statique sur CC de Carlo Gavazzi jusqu'à 100 A pour les tensions d'alimentation allant jusqu'à 60 VDC, jusqu'à 50 A pour les tensions d'alimentation de 200 VDC maximum et jusqu'à 10 A pour les tensions d'alimentation de 500 VDC maximum. Cette nouvelle gamme est adaptée au montage sur panneau ou au montage sur un dissipateur thermique. La commutation du RM1D est contrôlée par une tension de CC comprise dans une plage de 4 à 32 V. Une LED indique la présence d'une tension de contrôle sur le relais statique.

Le RM1D est la solution idéale lorsque les temps de réponse de la commutation, ON/OFF et inversement, sont critiques pour l'application. Entièrement statique, le RM1D est le choix évident pour les applications nécessitant un grand nombre de cycles de commutation, car la durée de vie du relais statique n'est pas compromise par ceux-ci.

Les spécifications sont notées à 25°C, sauf indication contraire.

Applications

Chauffages sur CC, électrovannes, équipements de test, connexion et déconnexion de batteries

Fonction principale

- Relais statique sur CC avec isolation de 3750 Vrms entre l'entrée et la sortie
- Temps de réponse rapides pour allumer et éteindre
- Entièrement statique pour un fonctionnement garanti sans problème sur un nombre important de cycles de commutation

Code de commande

251		
L 🖅	RM1D	

Saisir le code pour choisir l'option correspondante au lieu de . Reportez-vous à la guide de sélection pour les numéros de pièce valides.

Code	Option	Description	Notes
R	-	Poloio Statigue (PM)	
M		Relais Statique (RM)	
1		Commutation de 1 pôle	
D		Commutation CC	
	060	Tension nominale: 60 VCC (1-60 VCC)	
	200	Tension nominale: 200 VCC (1-200 VCC)	
	500	Tension nominale: 500 VCC (1-500 VCC)	
D		Tension de commande: 4-32 VCC	4.5-32 VCC avec RM1D200, RM1D500
	10	Courant nominal maximum (avec dissipateur thermique): 10 ACC	Non disponible avec RM1D200D
	20	Courant nominal maximum (avec dissipateur thermique): 20 ACC	Non disponible avec RM1D500D
	50	Courant nominal maximum (avec dissipateur thermique): 50 ACC	Non disponible avec RM1D500D
	100	Courant nominal maximum (avec dissipateur thermique): 100 ACC	Disponible uniquement avec RM1D060D
нт		Pad thermique monté d'usine	Option, disponible sur demande

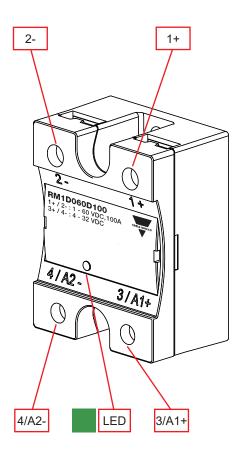
Guide de sélection

Tension	Tension de	Courant maximum de fonctionnement*					
nominale	nominale commande	10 ACC	20 ACC	50 ACC	100 ACC		
1-60 VCC	4-32 VCC	RM1D060D10	RM1D060D20	RM1D060D50	RM1D060D100		
1-200 VCC	4.5-32 VCC	-	RM1D200D20	RM1D200D50	-		
1-500 VCC	4.5-32 VCC	RM1D500D10	-	-	-		

^{*} Consulter les Tableaux de sélection des dissipateurs

Composants compatibles CARLO GAVAZZI

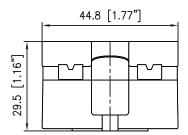
Objectif	Nom / code du composant	Notes
Dissipateurs thermiques	RHS	Dissipateurs thermiques et ventilateurs
Visserie pour montage de SSR	SRWKITM5X10MM	Quantité par paquet: 20 pièces
Terminaux de fourche	RM635KP	Quantité par paquet: 10 pièces
Protection au contact du capot	RMIP20	Quantité par paquet: 10 pièces
Pads thermiques	KK071CUT	Quantité par paquet: 50 pièces

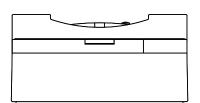

Lecture ultérieure

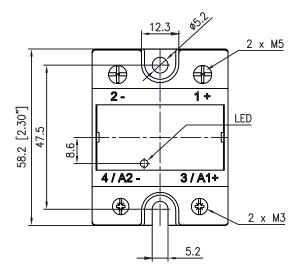
Information	Où la trouver
Outil de sélection du dissipateur thermique	https://gavazziautomation.com/nsc/FR/FR/solid_state_relays

Structure

Élément	Composant	Fonction
1+	Connexion de puissance	Connexion de charge ou connexion d'alimentation positive
2-	Connexion de puissance	Connexion de charge ou connexion d'alimentation à la terre
3/A1+	Connexion de commande	Signal d'alimentation de commande
4/A2-	Connexion de commande	Connexion à la terre pour le commande
LED	Indication de commande	Indique la présence d'une tension de commande




Caractéristiques


Données générales

Matériau	Noryl, noir
Montage	Panneau
Protection tactile	IP20
Isolation	Entre l'entrée et la sortie vers le boîtier: 3750 Vrms Entre l'entrée et la sortie: 3750 Vrms
Poids	env. 83 g
Indication LED	LED verte allumée en permanence lorsque l'entrée de contrôle est appliquée

Dimensions

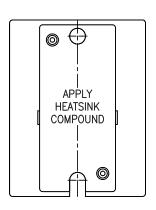
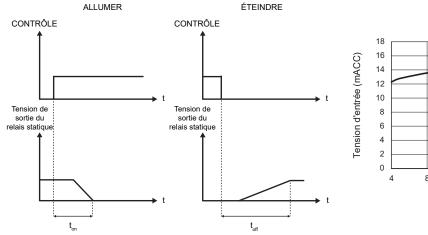


Fig. 1 Dimensions RM1D

Dimensions en mm sauf indication contraire

Carlo Gavazzi Ltd. 27/07/20 RM1D DS FRE

Performance


Sortie

		RM1	0060		RM1	RM1D500			
Courant max de fonctionnement: DC 1	10 ACC	20 ACC	50 ACC	100 ACC	20 ACC	50 ACC	10 ACC		
Tension de sortie absolue max.		60 V	CC		200	VCC 500 VCC			
Plage de tension de fonctionnement, Ue		1-60	VCC		1-200 VCC	1-200 VCC (150 VCC*)	1-500 VCC		
Protection de la sortie	Transil intégrée								
Absence de courant @ tension nominale		0.1 mACC							
Courant minimum de fonctionnement	5 mACC								
Courant de surcharge rép.	45 400	20.400	75 400	450 400	20.400	75 400	45.400		
UL508: T _{AMB} =40°C, t _{ON} =1 s, t _{OFF} =9 s, 50 cycles	15 ACC	30 ACC	75 ACC	150 ACC	30 ACC	75 ACC	15 ACC		

Veuillez vous reporter à la remarque figurant dans la section du schéma de câblage

Entrées

	RM1D060	RM1D200 RM1D500				
Contrôle de la plage de tension	4-32 VCC	4.5-32 VCC				
Tension d'enclenchement ¹	4 VCC 4.5 VCC					
Tension de déclenchement	1.2 VCC					
Tension inverse maximum	32 VCC					
Fréquence de commutation ²	1000) Hz				
Temps de réponse d'enclenchement à V _{out} = 24 VCC, t _{on} ³	≤10	0 µs				
Temps de réponse de déclenchement, t_{off}^3	≤100 µs ≤150 µs					
Entrée de courant @ 40°C	<16 mACC					

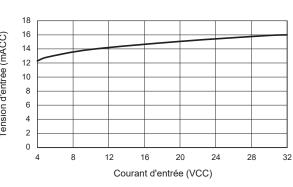


Fig. 2 Caractéristiques du temps de réponse

Fig. 3 Tension d'entrée par rapport à la courant d'entrée

- 1: La tension de démarrage augmente à 5,5 VCC à des températures de fonctionnement inférieures à -20 ° C
- 2: Le courant de sortie doit être déclassé à des fréquences de commutation élevées. Reportez-vous à la Déclassement de courant par rapport à la section de fréquence de commutation
- 3: Les temps de réponse seront plus longs pour des tensions de sortie faibles (<24 VCC)

Déclassement de courant par rapport à la fréquence de commutation

RM1D060D..

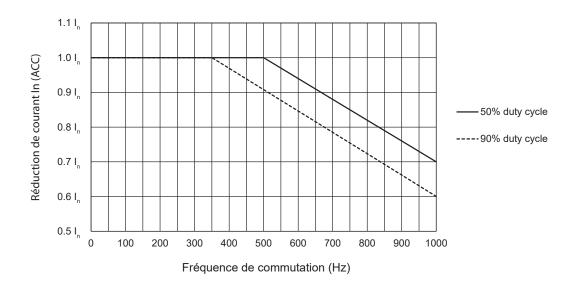


Fig. 4 Réduction de courant vs. fréquence de commutation

RM1D200D..

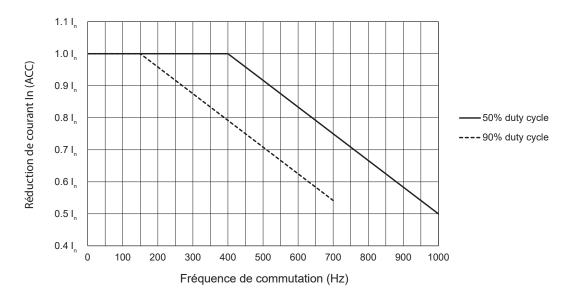


Fig. 5 Réduction de courant vs. fréquence de commutation⁴

Carlo Gavazzi Ltd. 27/07/20 RM1D DS FRE

Déclassement de courant par rapport à la fréquence de commutation

RM1D500D..

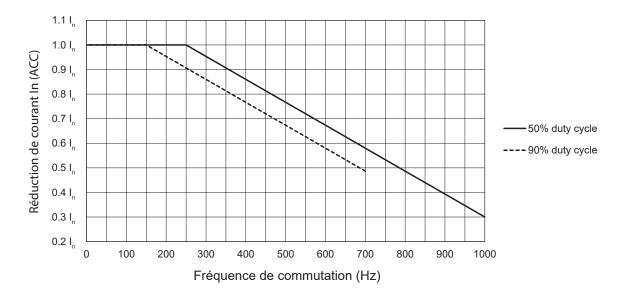


Fig. 6 Réduction de courant vs. fréquence de commutation⁴

- 4. À un cycle de service de 90 %, la fréquence de commutation de RM1D200D.. et de RM1D500D.. est limitée à 700 Hz. Cette limitation est liée à la perte de temps de réponse de 150 μs pour ces modèles. Par exemple :
 - Le temps d'arrêt à une fréquence de commutation de 800 Hz avec un cycle de service de 90 % est de 125 μs, ce qui est inférieur au temps nécessaire pour que le relais statique s'éteigne (150 μs) afin que la sortie du relais statique ne s'éteigne pas
 - Le temps d'arrêt à une fréquence de commutation de 600 Hz avec un cycle de service de 90 % est de 167 μs, ce qui est supérieur au temps nécessaire pour que le relais statique s'éteigne (150 μs)

Dissipation de la puissance au niveau de la sortie

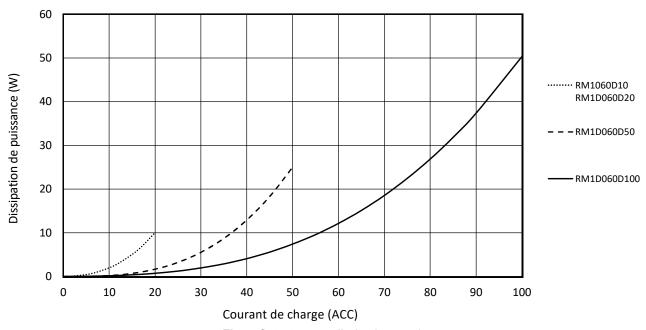


Fig. 7 Output power dissipation graph

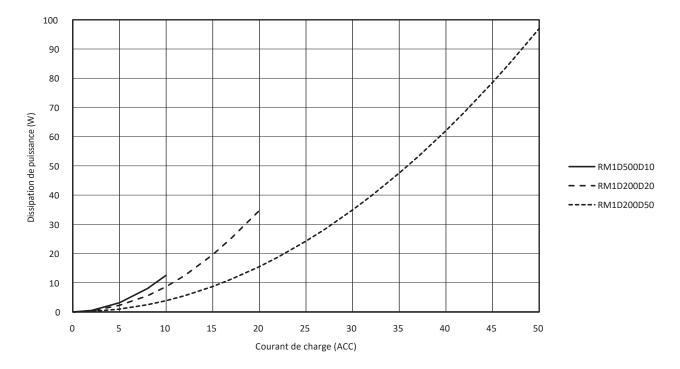


Fig. 8 Output power dissipation graph

Sélection dissipateur thermique

Remarque: La sélection de dissipateur thermique dans les tableaux ci-dessous n'est valable que lorsqu'une fine couche de pâte thermique à base de silicone (avec une résistance thermique similaire à celle spécifiée pour la R_{thcs} dans la rubrique relative aux données thermiques) est utilisée. Le relais statique surchauffera si cette sélection de dissipateur thermique est utilisée pour les assemblages de dissipateur thermique utilisant un matériau d'interface thermique dont la R_{thcs} est plus élevée que celle indiquée dans la rubrique relative aux données thermiques).

Résistance thermique [°C/W] de RM1D060D10, RM1D060D20

	Température ambiante [°C]						
Charge de courant [A]	20	30	40	50	60	70	80
20	nh	14.0	9.7	6.4	3.8	1.8	-
18	nh	nh	14.0	8.9	5.2	2.5	0.25
16	nh	nh	nh	13.3	7.5	3.5	0.51
14	nh	nh	nh	nh	11.4	5.1	0.92
12	nh	nh	nh	nh	nh	8.0	1.6
10	nh	nh	nh	nh	nh	14.3	2.7
8	nh	nh	nh	nh	nh	nh	5.0
6	nh	nh	nh	nh	nh	nh	11.5
4	nh	nh	nh	nh	nh	nh	nh
2	nh	nh	nh	nh	nh	nh	nh

Résistance thermique [°C/W] de RM1D060D50

		Température ambiante [°C]						
Charge de courant [A]	20	30	40	50	60	70	80	
50	4.3	3.3	2.4	1.6	0.9	0.22	-	
45	6.0	4.6	3.4	2.3	1.3	0.47	-	
40	8.8	6.7	4.9	3.3	2.0	0.82	-	
35	14.3	10.3	7.4	5.0	3.0	1.3	-	
30	nh	18.7	12.3	8.0	4.7	2.2	0.18	
25	nh	nh	nh	14.8	8.2	3.8	0.59	
20	nh	nh	nh	nh	17.5	7.2	1.4	
15	nh	nh	nh	nh	nh	18.5	3.2	
10	nh	nh	nh	nh	nh	nh	10.3	
5	nh	nh	nh	nh	nh	nh	nh	

Remarque: 'nh' signifie aucun dissipateur requis. Cependant, pour assurer une dissipation thermique optimale, le SSR doit être installé sur une embase.

Sélection dissipateur thermique (cont.)

Résistance thermique [°C/W] de RM1D060D100

	Température ambiante [°C]							
Charge de courant [A]	20	30	40	50	60	70	80	
100	1.8	1.4	1.1	0.73	0.4	-	-	
90	2.4	1.9	1.5	1.0	0.6	0.21	-	
80	3.3	2.7	2.0	1.4	0.88	0.37	-	
70	4.8	3.8	2.9	2.1	1.3	0.61	-	
60	7.6	5.9	4.4	3.1	2.0	0.98	-	
50	14.0	10.2	7.4	5.1	3.2	1.6	0.27	
40	nh	nh	15.5	9.9	5.9	2.9	0.64	
30	nh	nh	nh	nh	14.2	6.3	1.5	
20	nh	nh	nh	nh	nh	nh	4.2	
10	nh	nh	nh	nh	nh	nh	nh	

Résistance thermique [°C/W] de RM1D200D20

		Température ambiante [°C]					
Charge de courant [A]	20	30	40	50	60	70	80
20	3.4	2.8	2.2	1.7	1.2	0.71	0.27
18	4.8	3.9	3.1	2.4	1.7	1.1	0.53
16	7.1	5.7	4.5	3.4	2.5	1.7	0.91
14	11.5	9.0	6.9	5.2	3.8	2.6	1.5
12	nh	16.1	11.7	8.5	6.1	4.1	2.4
10	nh	nh	nh	16.3	10.6	6.7	3.9
8	nh	nh	nh	nh	nh	13.5	7.0
6	nh	nh	nh	nh	nh	nh	17.5
4	nh	nh	nh	nh	nh	nh	nh
2	nh	nh	nh	nh	nh	nh	nh

Résistance thermique [°C/W] de RM1D200D50

		Température ambiante [°C]					
Charge de courant [A]	20	30	40	50	60	70	80
50	1.1	1.0	0.79	0.60	0.42	0.24	-
45	1.6	1.4	1.1	0.86	0.62	0.39	0.17
40	2.3	1.9	1.6	1.2	0.92	0.62	0.33
35	3.4	2.8	2.3	1.8	1.4	1.0	0.55
30	5.3	4.4	3.5	2.8	2.1	1.5	0.92
25	9.3	7.5	5.9	4.6	3.4	2.4	1.5
20	nh	16.5	11.9	8.7	6.2	4.2	2.5
15	nh	nh	nh	nh	15.6	9.2	5.1
10	nh	nh	nh	nh	nh	nh	17.5
5	nh	nh	nh	nh	nh	nh	nh

Remarque: 'nh' signifie aucun dissipateur requis. Cependant, pour assurer une dissipation thermique optimale, le SSR doit être installé sur une embase.

Sélection dissipateur thermique (cont.)

Résistance thermique [°C/W] de RM1D500D10

		Température ambiante [°C]					
Charge de courant [A]	20	30	40	50	60	70	80
10	10.7	8.3	6.4	4.7	3.3	2.2	1.1
9	17.0	12.6	9.4	6.8	4.8	3.1	1.7
8	nh	nh	14.8	10.4	7.2	4.6	2.6
7	nh	nh	nh	17.3	11.1	7.0	4.1
6	nh	nh	nh	nh	nh	11.3	6.1
5	nh	nh	nh	nh	nh	nh	10.2
4	nh	nh	nh	nh	nh	nh	nh
3	nh	nh	nh	nh	nh	nh	nh
2	nh	nh	nh	nh	nh	nh	nh
1	nh	nh	nh	nh	nh	nh	nh

Sélection du dissipateur thermique pour les versions avec pad thermique

Note: Remarque: La sélection du dissipateur thermique dans les tableaux ci-dessous est valable pour les modèles ayant une interface thermique pré-montée (RM1D..HT). La résistance thermique Rthcs_de l'interface utilisée est précisée dans la section Données Thermiques (réf. KK071CUT). En cas de remplacement, une interface thermique ayant une résistance thermique identique ou inférieure doit être utilisé pour empêcher la surchauffe du relais.

Résistance thermique [°C/W] of RM1D060D10HT, RM1D060D20HT

	Température ambiante [°C]						
Charge de courant [A]	20	30	40	50	60	70	80
20	nh	13.7	9.3	6.0	3.5	1.4	-
18	nh	nh	13.7	8.6	4.9	2.1	-
16	nh	nh	nh	12.9	7.1	3.1	0.16
14	nh	nh	nh	nh	11.0	4.7	0.57
12	nh	nh	nh	nh	19.8	7.6	1.2
10	nh	nh	nh	nh	nh	14.0	2.3
8	nh	nh	nh	nh	nh	nh	4.7
6	nh	nh	nh	nh	nh	nh	11.1
4	nh	nh	nh	nh	nh	nh	nh
2	nh	nh	nh	nh	nh	nh	nh

Remarque: 'nh' signifie aucun dissipateur requis. Cependant, pour assurer une dissipation thermique optimale, le SSR doit être installé sur une embase.

Sélection du dissipateur thermique pour les versions avec pad thermique (cont.)

Résistance thermique [°C/W] of RM1D060D50HT

		Température ambiante [°C]					
Charge de courant [A]	20	30	40	50	60	70	80
50	4.0	3.0	2.1	1.3	0.55	-	-
45	5.7	4.3	3.0	2.0	1.0	0.12	-
40	8.5	6.3	4.5	3.0	1.6	0.47	-
35	13.9	10.0	7.0	4.6	2.6	1.0	-
30	nh	18.3	12.0	7.6	4.4	1.9	-
25	nh	nh	nh	14.4	7.8	3.4	0.24
20	nh	nh	nh	nh	17.2	6.8	1.0
15	nh	nh	nh	nh	nh	18.2	2.9
10	nh	nh	nh	nh	nh	nh	10.0
5	nh	nh	nh	nh	nh	nh	nh

Résistance thermique [°C/W] of RM1D060D100HT

		Température ambiante [°C]					
Charge de courant [A]	20	30	40	50	60	70	80
100	1.4	1.1	0.71	0.38	-	-	-
90	2.1	1.6	1.1	0.66	0.25	-	-
80	3.0	2.3	1.7	1.1	0.53	-	-
70	4.5	3.5	2.6	1.7	1.0	0.26	-
60	7.3	5.5	4.1	2.8	1.6	0.63	-
50	13.6	9.9	7.1	4.8	2.9	1.3	-
40	nh	nh	15.1	9.5	5.5	2.6	0.29
30	nh	nh	nh	nh	13.8	6.0	1.1
20	nh	nh	nh	nh	nh	nh	3.8
10	nh	nh	nh	nh	nh	nh	nh

Résistance thermique [°C/W] of RM1D200D20HT

		Température ambiante [°C]					
Charge de courant [A]	20	30	40	50	60	70	80
20	3.0	2.4	1.8	1.3	0.82	0.36	-
18	4.4	3.5	2.7	2.0	1.4	0.74	0.18
16	6.7	5.3	4.1	3.1	2.1	1.3	0.56
14	11.2	8.7	6.6	4.9	3.4	2.2	1.1
12	nh	16.2	11.7	8.4	5.8	3.7	2.1
10	nh	nh	nh	16.4	10.6	6.8	3.9
8	nh	nh	nh	nh	nh	13.7	7.1
6	nh	nh	nh	nh	nh	nh	17.7
4	nh	nh	nh	nh	nh	nh	nh
2	nh	nh	nh	nh	nh	nh	nh

Remarque: 'nh' signifie aucun dissipateur requis. Cependant, pour assurer une dissipation thermique optimale, le SSR doit être installé sur une embase.

Sélection du dissipateur thermique pour les versions avec pad thermique (cont.)

Résistance thermique [°C/W] of RM1D200D50HT

	Température ambiante [°C]						
Charge de courant [A]	20	30	40	50	60	70	80
50	0.84	0.64	0.44	0.25	-	-	-
45	1.3	1.0	0.76	0.51	0.27	-	-
40	2.0	1.6	1.2	0.89	0.57	0.27	-
35	3.0	2.5	2.0	1.5	1.0	0.60	0.20
30	4.9	4.0	3.2	2.4	1.8	1.1	0.57
25	9.2	7.3	5.7	4.3	3.1	2.1	1.2
20	nh	16.5	12.0	8.7	6.2	4.2	2.5
15	nh	nh	nh	nh	15.7	9.3	5.2
10	nh	nh	nh	nh	nh	nh	17.8
5	nh	nh	nh	nh	nh	nh	nh

Résistance thermique [°C/W] of RM1D500D10HT

		Température ambiante [°C]					
Charge de courant [A]	20	30	40	50	60	70	80
10	10.4	8.0	6.0	4.4	3.0	1.8	0.76
9	16.8	12.3	9.0	6.5	4.4	2.8	1.4
8	nh	nh	14.8	10.1	6.8	4.3	2.3
7	nh	nh	nh	17.4	11.2	6.9	3.7
6	nh	nh	nh	nh	nh	11.4	6.1
5	nh	nh	nh	nh	nh	nh	10.4
4	nh	nh	nh	nh	nh	nh	nh
3	nh	nh	nh	nh	nh	nh	nh
2	nh	nh	nh	nh	nh	nh	nh
1	nh	nh	nh	nh	nh	nh	nh

Remarque: 'nh' signifie aucun dissipateur requis. Cependant, pour assurer une dissipation thermique optimale, le SSR doit être installé sur une embase.

Données thermiques

	RM1D060D10 RM1D060D20 RM1D060D50	RM1D060D100	RM1D200D20	RM1D200D50	RM1D500D10
Température max. de jonction	175°C	175°C	150°C	150°C	150°C
Raccordement au boîtier de la résistance thermique, $R_{\rm thjc}$	1.2°C/W	0.6°C/W	0.9°C/W	0.45°C/W	1.5°C/W
Raccordement au dissipateur thermique de la résistance thermique, R _{thcs} ⁵	0.2°C/W	0.2°C/W	0.1°C/W	0.1°C/W	0.2°C/W
Raccordement au dissipateur thermique de la résistance thermique (RM1DHT), R _{thcs_HT} ⁶	0.55°C/W	0.55°C/W	0.55°C/W	0.55°C/W	0.55°C/W

^{5:} Les valeurs de résistance thermique du boîtier vers le dissipateur thermique s'appliquent après application d'une fine couche de pâte thermique à base de silicone HTS02S d'Electrolube entre le relais statique et le dissipateur thermique.

^{6:} Les valeurs de résistances thermiques du boitier vers le dissipateur pour RM1D..HT sont applicables pour le pad thermique KK071CUT qui est pré-monté d'usine sur le RM1D

Compatibilité et conformité

Approbations	
Conformité aux normes	LVD: EN/IEC 60947-1 EMCD: EN/IEC 61000-6-4, EN/IEC 61000-6-2 UR: UL508, E80573, NRNT2 cUR: CSA 22.2 No.14-18, E80573, NRNT8
Courant nominal de court- circuit UL	5 kArms

Compatibilité électromagnétique	e (CEM) - Immunité
Décharge électrostatique (ESD)	EN/IEC 61000-4-2 8 kV rejet d'air, 4 kV contact (PC2)
Fréquence radio rayonnée	EN/IEC 61000-4-3 10 V/m, de 80 MHz à 1 GHz (PC1) 10 V/m, de 1 GHz à 2.7 GHz (PC1)
Immunité aux transitoires électriques rapides	EN/IEC 61000-4-4 Sortie 5 kHz, 100 kHz: 2 kV (PC2) Entrée 5 kHz, 100 kHz: 1 kV (PC2)
Radio fréquence conduite	EN/IEC 61000-4-6 10 V/m, de 0.15 à 80 MHz (PC1)
Surtension électrique	EN/IEC 61000-4-5 Sortie, ligne vers ligne: 1 kV (PC2) Sortie, ligne vers terre: 1 kV (PC2) Entrée, ligne vers terre: 1 kV (PC2)
Chutes de tension	EN/IEC 61000-4-11 0% pour 10, 20, 5000 ms (PC2) 40% pour 200 ms (PC2) 70% pour 500 ms (PC2) 80% pour 5000 ms (PC2)
Chutes de tension, interrup- tions brèves et variations de tension	EN/IEC 61000-4-29 0% pour 1, 3, 10, 30, 100, 300, 1000 ms (PC2) 30% pour 10, 30, 100, 300, 1000 ms (PC2) 40% pour 10, 30, 100, 300, 1000 ms (PC2) 60% pour 10, 30, 100, 300, 1000 ms (PC2) 70% pour 10, 30, 100, 300, 1000 ms (PC2) 80% sur min. 19.2 VCC pour 10, 30, 100, 300, 1000, 3000, 10000 ms (PC2) 120% sur min. 29.8 VCC pour 10, 30, 100, 300, 1000, 3000, 10000 ms (PC2)

Compatibilité électromagnétique (CEM) - Émissions					
Interférence radio dans les émissions de champ (par radiation)	EN/IEC 55011 Classe B: de 0.15 à 30 MHz				
Interférence radio dans les émissions de champ (par conduction)	EN/IEC 55011 Classe B: de 30 MHz à 1 GHz				

Remarque:

- Critère de performance 1 (PC1): Aucune dégradation de performance ou perte de fonction n'est autorisée lorsque le produit est utilisé comme prévu.
- Critère de performance 2 (PC2): Au cours du test, une dégradation de performance ou une perte partielle de fonction est autorisée. Une fois le test terminé, le produit devra fonctionner à nouveau comme prévu.

Carlo Gavazzi Ltd. 15 27/07/20 RM1D DS FRE

Spécifications environnementales

Température de fonctionnement	-20°C à 80°C (-4°F à 176°F)
Température de stockage	-40°C à +100°C (-40°F à +212°F)
Humidité relative	95% sans condensation @ 40°C
Degré de pollution	2
Altitude installation	0-1000 m Au-dessus de 1000 m déclassement linéaire par 1 % de FLC par 100 m jusqu'à un maximum de 2000 m
Résistance aux vibrations	2 g / axe
Conforme EU RoHS	Oui
China RoHS	25

La déclaration présente dans cette section est préparée en conformité à la Norme de l'industrie électronique SJ/T11364-2014 de la République Populaire de Chine : Marquage pour la limitation de l'utilisation de substances dangereuses dans les produits électriques et électroniques.

	Substances et éléments toxiques ou à risque						
Nom de la pièce	Plomb (Pb)	Mercure (Hg)	Cadmium (Cd)	Chrome hexa- valent (Cr(VI))	Biphényles polybromés (PBB)	Polybromodi- phényléthers (PBDE)	
Groupe unité d'alimentation	Х	0	0	0	0	0	

O : Cela indique sur ladite substance dangereuse contenue dans des matériaux homogènes pour cette pièce est en dessous des limites requises de GB/T 26572.

这份申明根据中华人民共和国电子工业标准

SJ/T11364-2014: 标注在电子电气产品中限定使用的有害物质

	有毒或有害物质与元素						
零件名称	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(Vl))	多溴化联苯 (PBB)	多溴联苯醚 (PBDE)	
功率单元	Х	0	0	0	0	0	

O:此零件所有材料中含有的该有害物低于GB/T 26572的限定。

X: 此零件某种材料中含有的该有害物高于GB/T 26572的限定。

X : Cela indique sur ladite substance dangereuse contenue dans un des matériaux homogènes utilisés pour cette pièce est au-dessus des limites requises de GB/T 26572.

Protection de court circuit

Numéro de	Tableau du	Ferraz Shawmut (Mersen)			Siba		
référence	courtcircuit de courant [kArms]	Taille max. du fusible [A]	Numéro de référence	Tension [VCC]	Taille max. du fusible [A]	Numéro de référence	Tension [VCC]
RM1D060D10	-	15	A4J15	300	16	5019006.16	660
RM1D060D20		25	A4J25		25	5019006.25	
RM1D060D50		70	A4J70		63	5019006.63	
RM1D060D100	5	125	A4J125		125	5019006.125	440
RM1D200D20		25A	HSJ25		25	5019006.25	
RM1D200D50		70A	HSJ70	500	63	5019006.63	660
RM1D500D10		15A	HSJ15		16	5019006.16	

Carlo Gavazzi Ltd. 17 27/07/20 RM1D DS FRE

Schémas de câblage

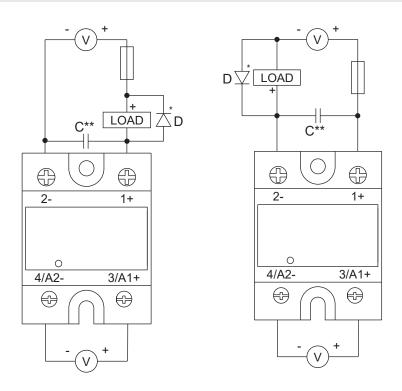


Fig. 9 Schémas de câblage RM1D

- * Une diode de suppression D est nécessaire pour les charges inductives.
- **Valable uniquement pour RM1D200.. et RM1D500..

Les câbles de câblage dans un système CC agissent comme un inducteur et lors de la commutation de la charge, les transitoires de tension peuvent dépasser la valeur max. de tension du relais statique, entraînant des dommages sur le relais statique. La sortie RM1D est protégée par une diode de suppression de tensions transitoires interne, cependant, ce composant interne n'est pas destiné à un fonctionnement répétitif comme cela peut se produire dans des situations avec des tensions transitoires répétitives (par exemple avec des fréquences de commutation élevées). La diode de suppression de tensions transitoires interne tombera en panne prématurément. Par conséquent, pour les modèles RM1D200D.. et RM1D500D.., lorsqu'ils sont utilisés à des fréquences de commutation > 1 Hz, il est fortement recommandé de connecter le condensateur C sur la sortie du relais statique comme indiqué sur la Fig. 9 pour protéger la sortie du relais statique des dommages résultant de tensions transitoires incontrôlées. Le dimensionnement du condensateur C dépend de la longueur des câbles dans le système, de la distance entre les câbles et de la section transversale. Les longueurs de câblage des câbles doivent être aussi courtes que possible.

Le condensateur C n'est pas nécessaire (même à des fréquences de commutation élevées) si les tensions transitoires peuvent être contrôlées et ne peuvent pas dépasser la tension nominale maximale absolue du relais statique.

ATTENTION!

En particulier pour le **RM1D200D50**, si C est requis en raison de fréquences de commutation élevées comme expliqué ci-dessus, la valeur de la tension de sortie absolue max. du relais statique doit être limitée à 150 Vcc.

Valeurs C suggérées pour un système avec une longueur totale de câble de 5 mètres, une distance de 0,1 mm entre les câbles :

330 nF pour le **RM1D200D20** avec des valeurs nominales maximales de 200 VCC, 20 ACC et une section de câbles de 2,5 mm²

680 nF en série avec 1 Ω (10 W) pour le **RM1D200D50** avec des valeurs nominales maximales de 150 VCC, 50 ACC et une section de câbles de 10 mm²

68 nF pour le **RM1D500D10** avec des valeurs nominales maximales de 500 VCC, 10 ACC et une section de câbles de 2,5 mm²

La tension nominale du condensateur doit être de 2 fois la tension nominale du système.

Pour d'autres longueurs et types de câble, veuillez consulter un représentant Carlo Gavazzi pour obtenir des conseils.

Diagramme de fonctionnement

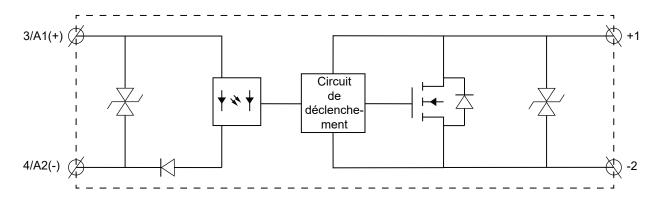


Fig. 10 Diagramme fonctionnel RM1D

Installation

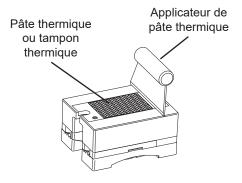


Fig. 11 Une fine couche de pâte de silicone thermiquement conductrice doit être appliquée de façon homogène sur le socle du relais statique avant son montage sur un dissipateur thermique. Alternativement, un pad thermique peut être utilisé. Le matériau de l'interface thermique affecte la performance thermique. Assurez-vous que la taille du dissipateur thermique est adaptée.

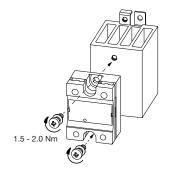


Fig. 12 Serrer les vis alternativement jusqu'à 0.5 Nm maxi puis, poursuivre jusqu'à 2.0 Nm maxi.

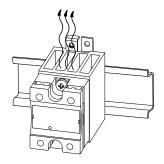


Fig. 13 Un montage vertical (impératif) du dissipateur avec ailettes garantit un écoulement d'air optimal dans le dissipateur.

Spécifications de connexion

	1+	, 2-	3/A1+, 4/A2-			
Vis de montage (relais statique vers dissipateur)	M5, non fournies avec le relais statique (Voir SRWKITM5X10MM à la section Références)					
Couple de serrage (relais statique vers dissipateur)	1.5 - 2.0 Nm (13.3 - 17.7 lb-in)					
Conducteurs	Utiliser des condu 75°C	cteurs cuivre (Cu)	Utiliser des conducteurs cuivre (Cu) 60/75°C			
Longueur à dénuder, X	12 mm		8 mm			
Type de connexion	Vis M5 avec ronde	elle captive	Vis M3 avec rondelle captive			
Rigide (massif et toronné) Caractéristiques nomina- les UR/CSA	1x 2.5 - 6.0 mm ² 2x 2.5 - 6.0 mm ² 1x 14 - 10 AWG 2x 14 - 10 AWG		1x 0.5 - 2.5 mm ² 1x 18 - 12 AWG	2x 0.5 - 2.5 mm ² 2x 18 - 12 AWG		
Souple avec manchon d'extrémité	1x 1.0 - 4.0 mm ² 1x 18 - 12 AWG	2x 1.0 - 2.5 mm ² 2x 2.5 - 4.0 mm ² 2x 18 - 14 AWG 2x 14 - 12 AWG	1x 0.5 - 2.5 mm ² 1x 18 - 12 AWG	2x 0.5 - 2.5 mm ² 2x 18 - 12 AWG		
Souple sans manchon d'extrémité	1x 1.0 - 6.0 mm ² 1x 18 - 10 AWG	2x 1.0 - 2.5 mm ² 2x 2.5 - 6.0 mm ² 2x 18 - 14 AWG 2x 14 - 10 AWG	-	-		
Couples de serrage	Pozidrive 2 2.4 Nm (21.2 lb-in)		Pozidrive 1 0.5 Nm (4.4 lb-in)			
Ouverture de la cosse de terminaison	12 mm		7.5 mm			

COPYRIGHT ©2020

Sous réserve de modifications. Télécharger le PDF: www.gavazziautomation.com