CARLO GAVAZZI

VariFlex ${ }^{2}$

RVCF Series
Advanced User Manual

230 V Class 1 ph or 3 ph $0.4 \sim 30.0 \mathrm{~kW}$
$0.5 \sim 40 \mathrm{HP}$
480V Class 3ph
0.75~55kW
$1.0 \sim 75 \mathrm{HP}$

General Information

The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation or adjustment of the optional parameters of the equipment or from mismatching the variable speed drive with the motor.
The contents of this guide are believed to be correct at the time of printing. In the interests of commitment to a policy of continuous development and improvement, the manufacturer reserves the right to change the specification of the product or its performance, or the content of the guide without notice.
All rights reserved. No parts of this guide may be reproduced or transmitted in any form or by any means, electrical or mechanical including, photocopying, recording or by an information storage or retrieval system, without permission in writing from the publisher.

Drive Software Version

This product is supplied with the latest version of user-interface and machine control software.
This product is to be used in a new or existing system with other drives, there may be differences between their software and the software in this product. These differences may the product to function differently. This may also apply to drives returned from the Carlo Gavazzi Service Centre.
If there is any doubt, please contact your local Carlo Gavazzi representative or Distributor.

Environmental Statement

The electronic variable speed drives have the potential to save energy and (through increased machine/process efficiency) reduce raw material consumption and scrap throughout their long working lifetime. In typical applications, these positive environmental effects far outweigh the negative impacts of product manufacture and end-of-life disposal.
Nevertheless, when the products eventually reach the end of their useful life, they can very easily be dismantled into their major component parts for efficient recycling. Many parts snap together and can be separated without the use of tools, while other parts are secured with conventional screws.
Virtually all parts of the product are suitable for recycling.
Product packaging is of good quality and can be re-used. All the products come in strong cardboard cartons which themselves have a high recycled fibre content. If not re-used, these containers can be recycled. Polythene, used on the protective film and bags from wrapping product, can be recycled in the same way. Carlo Gavazzi packaging strategy favours easily recyclable materials of low environmental impact, and regular reviews identify opportunities for improvement.
When preparing to recycle or dispose of any product or packaging, please observe local legislation and best practice.

Advanced User Guide

This guide is to assist in installing and running the inverter to verify that the drive and motor are working properly. Starting, stopping and speed control will be from the keypad. If your application requires external control or special system programming, consult the RVCF Instruction Manual supplied with your inverter.

Step 0: Products Inspection

Carlo Gavazzi's inverters are all passed the function test before delivery. Please check the followings when you received and unpacked the inverter:

- The model and capacity of the inverter are the same as those specified in your purchase order.
- Check where there are any damages caused by transportation. Please do not apply the power, and do contact Carlo Gavazzi's sales representatives if any of the above problems happened.

Step 1: Before Starting the Inverter

Please review Introduction and Safety Precautions of the RVCF Instruction Manual. Verify drive was installed in accordance with the procedures as described in this manual. If you feel this was abnormal, do not start the drive until qualified personnel have corrected the situation. (Failure to do so could result in serious injury.)

- Check inverter and motor nameplates to determine that they have the same HP and voltage ratings. (Ensure that full load motor amps do not exceed that of the inverter.)
- Remove the terminal cover to expose the motor and power terminals.
a. Verify that AC power is wired to L1, L2, and L3.
b. Verify that Motor leads are connected to T1, T2, and T3.
(The two leads may need to be reversed if motor rotation is not correct).

1. SEQLED: $\quad 1-00=0001$, LED Lit.
2. FRQ LED: $1-06=0001 / 0002 / 0003 / 0004 / 0005$, LED Lit
3. FWD LED: Forward Direction, LED action(Flash in stop, Keep Lit in operation).
4. REV LED: Reverse Direction, LED action(Flash in stop, Keep Lit in operation).
5. Four action of FUN, Hz/RPM, VOLT, AMP LED and display of four 7-segment display, refer to operation description of the keypad.
6. LCD keypad without FUN, Hz/RPM, VOLT, AMP LED.

Step 2: Apply Power to the Drive

- Apply AC power to the Drive and observe Operator. Four 7-segment Display should read Power Voltage for 3~5 seconds and then read Frequency/Speed, 05.00. Four 7-segment Display and FWD LED should be flashed all the time.

Step 3: Check Motor Rotation Without Load

- Press RUN key (FWD LED should light); Four 7-segment Display should run from 00.00 to 05.00.
- Check motor rotation. If it is not correct:

Press STOP key. Remove AC power. Wait for LED "charge" lamp to extinguish.
Reverse motor leads T1 and T2. Restart the drive and check new rotation.

- Press STOP key to stop the drive.

Step 4 Check Full Speed at $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$

- Frequency/Speed can be changed by pressing the up or down Arrow keys. To move right or left for next digit, press SHIFT/RESET key. Press the READ/ENTER key to set the speed.
- Set frequency up to $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ in accordance with the last rule ($0-05$ parameter).
- Press RUN key. Check drive acceleration to full speed.
- Press STOP key to stop drive and check deceleration.

Step 5 Other Operations

Please refer to the following pages:

\qquad
Set Decel
pag. 55
Set Max Speed . pag. 55
Set Min Speed . pag. 55
Set Motor Rated Current . pag. 49
Set Control Mode (Sensorless, V/F) . pag. 49

CONTENTS

CARLO GAVAZZI

Guide
Introduction pag. 6
i. 1 Preface pag. 6
i. 2 Precautions pag. 6
i. 3 Products Inspection pag. 6
Chapter 1 Safety Precautions pag. 7
1.1 Before Power ON pag. 7
1.2 During Power ON pag. 7
1.3 Before Operation pag. 8
1.4 During Operation pag. 8
1.5 Useable Environment pag. 9
Chapter 2 Model Description pag. 10
2.1 Label description pag. 10
2.2 Ordering Key pag. 10
2.3 Type selection pag. 11
Chapter 3 Ambient Environment and Installation pag. 12
3.1 Environment pag. 12
3.2 Environmental Precautions pag. 13
3.3 Wiring Role pag. 14
3.3.1 Notice for Wiring pag. 14
3.3.2 Fuse Type pag. 15
3.3.3 Applicable specification of magnetic contactor and wires pag. 16
3.3.4 Precautions for peripheral applications pag. 17
3.4 Specifications pag. 20
3.4.1 Products Individual Specifications pag. 20
3.4.2 General Specifications pag. 21
3.5 Wiring Diagram RVCF Series Inverter pag. 23
3.6 Description of inverter terminals pag. 25
3.7 Outline Dimensions pag. 26
Chapter 4 Software Index pag. 29
4.1 Keypad Description pag. 29
4.1.1 Keypad Display and Operation Instruction pag. 29
4.1.2 Operation Instruction of the Keypad pag. 30
4.1.3 Operation Instruction of the LED Keypad pag. 31
4.1.4 Operation Instruction of the LCD Keypad pag. 32
4.1.5 Keypad Operating Example pag. 33
4.2 Control Mode Selection pag. 35
4.3 RVCF Programmable Functions List pag. 36
4.4 Parameter Function Description pag. 49
4.5 Specification Description on Built-in PLC Function pag. 87
4.5.1 Basic Instruction pag. 87
4.5.2 Function of Basic Instruction pag. 88
4.5.3 Application Instructions pag. 89
Chapter 5 Troubleshooting and Maintenance pag. 96
5.1 Error Display and Remedy pag. 96
5.1.1 Error which can not be Recovered Manually pag. 96
5.1.2 Error which can be recovered manually and automatically pag. 96
5.1.3 Error which can be recovered manually but not automatically pag. 97
5.1.4 Special Conditions pag. 97
5.1.5 Operation Errors pag. 98
5.2 General functional troubleshooting pag. 99
5.3 Quick troubleshooting RVCF pag. 100
5.4 Routine Inspection and Period Inspection pag. 106
5.5 Maintenance and Inspection pag. 107
Chapter 6 Peripheral Components pag. 108
6.1 Reactor Specification at Input Side pag. 108
6.2 Reactor Specification at DC Side pag. 108
6.3 Braking unit and braking resistor pag. 109
6.4 Digital Operator and Extension Cable pag. 110
6.5 EMC Filter pag. 111
6.5.1 EMC Filter Dimensions (mm) pag. 112
6.6 Interface Card pag. 115
6.6.1 RS-485 Interface Card pag. 115
6.6.2 RS-232 Interface Card pag. 115
6.6.3 Program Copy Unit pag. 115
Appendix 1 RVCF Motor Internal Parameter List pag. 116
Appendix 2 RVCF Parameters Setting List pag. 117
Appendix 3 RVCF Communication Time-out Table pag. 118
Appendix 4 CE certificate pag. 119
Appendix 5 Approvals Table: UL Listing and CE certification Information pag. 120

Chapter 0: Introduction

i. 1 Preface

To extend the performance of the product and ensure your safety, please read this manual thoroughly before using the inverter. Should there be any problem in using the product and can not be solved with the information provided in the manual, contact your nearest Carlo Gavazzi's distributor or our sales representatives who will be willing to help you. Please keep using Carlo Gavazzi's products in the future.

i. 2 Precautions

The inverter is an electrical electronic product. For your safety, there are symbols such as "Danger", "Caution" in this manual to remind you to pay attention to safety instructions on handling, installing, operating, and checking the inverter. Be sure to follow the instructions for highest safety.

Indicates a potential hazard could cause death or serious personal injury if misused.

Indicates that the inverter or the mechanical system might be damaged if misused.
! Danger

- Do not touch any circuit boards or components if the charging indicator is still lit after turned the power off.
- Do not wire when the inverter is electrified. Do not check parts and signals on circuit boards during the inverter operation.
- Do not disassemble the inverter and modify internal wires, circuits and parts.
- Ground the ground terminal of the inverter properly. As for 230 V class ground to 100Ω or below, 480 V class ground to 10Ω or below.

Caution

- Do not perform a voltage test on parts inside the inverter. High voltage will easily destroy these semiconductor parts.
- Do not connect T1 (U), T2 (V), and T3 (W) terminals of the inverter to AC power supply.
- CMOS ICs on the inverter's main board are susceptible to static electricity. Do not touch the main circuit board.

i. 3 Products Inspection

Carlo Gavazzi's inverters are all passed the function test before delivery. Please check the followings when you received and unpacked the inverter:

- The model and capacity of the inverter are the same as those specified in your purchase order.
- Check where there are any damages caused by transportation. Please do not apply the power, and do contact Carlo Gavazzi's sales representatives if any of the above problems happened.

Chapter 1:
 Safety Precautions

1.1 Before Power ON

Caution
The line voltage applied must comply with the inverter's specified input voltage.

Danger

Make sure the main circuit connections are correct. L1(L), L2 and L3(N) are power-input terminals and must not be mistaken for T1, T2 and T3. Otherwise, the inverter might be damaged.

Caution

- To avoid the front cover from disengaging, do not pull the cover during handling for the heat sink should be fallen off. Accident falling down will damage the inverter or injure to person, which should be avoided.
- To avoid the risk of fire, do not install the inverter on a flammable object. Install it on nonflammable object such as metal.
- If several inverters are placed in the same control panel, add extra heat sink to keep the temperature below $40^{\circ} \mathrm{C}$ to avoid overheat or fire.
- When removing or installing the operator, turn OFF the power first, and manipulate the operator following the instruction of the diagram to avoid operator error or no display caused by bad contact.

Warning
This is a product of the restricted sales distribution class according to IEC 61800-3. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

AT Caution
To ensure the safety of peripheral devices, it is strongly command to install a fast acting fuse
in the input side especially for higher output system. Regarding the specification of fast
acting fuse, see the fuse table in this manual.

1.2 During Power ON

Danger

- Do not plug or unplug the connectors on the inverter when electrified to avoid the control panel damage resulting from erratic transition voltage surge due to contact bounce.
- When momentary power loss is longer than 2 seconds (the larger of horse power, the longer of time), the inverter does not have enough storage power to control the circuit; Therefore, when power is regenerated, the operation of the inverter is based on the setup of 1-00 / 2-05 and the condition of external switch, this is considered to be [restart] in the following paragraphs.

! Danger
- When the momentary power loss is short, the inverter still has enough storage power to control the circuit. Therefore, when power is regenerated, the inverter will automatically restart depending on the setup of 2-00/2-01.
- When restart the inverter, the operation of the inverter is based on the setup of 1-00 and 2-05 and the condition of external switch (FWD/REV button). Attention: the start operation is irrelevant with 2-00/2-01/2-02/2-03.

1. When $1-00=0000$, the inverter will not automatically run after restart.
2. When $1-00=0001$ and the external switch (FWD/REV button) is OFF, the inverter will not run after restart.
3. When $1-00=0001$, the external switch (FWD/REV button) is $O N$, and $2-05=0000$, the inverter will run automatically after restart. Attention: In the sake of safety, please turn off the external switch (FWD/REV button) after power loss to avoid underling damage to the machine and the human body after sudden regeneration of power.

- To ensure the safety of people and machine, please refer to the description and suggestion of 2-05

1.3 Before Operation

! Danger

Make sure the model and capacity are the same as those set by 15-0.

Caution			
The inverter will flash the power voltage set by $0-07$ for 5 seconds when applying power.			

1.4 During Operation

! Danger

Do not engage or disengage the motor during operation. Otherwise, the over-current will cause the inverter to disconnect or the main circuit to burn.

! Danger

- To avoid electric shock, do not take the front cover off during electrifying.
- The motor will restart automatically after stop when auto-restart function is on. In this case, do not get close to the machine.
- Note: The stop switch is different from the usage of the emergency stop switch. It must be set first to be effective.

 Caution

- Do not touch heat-generating components such as heat sink and braking resistor.
- The inverter can drive the motor running from low speed to high speed. Verify the allowable capacities range of the motor and the mechanism.
- Note the settings related to the braking reactor.
- Do not check signals on circuit boards while the inverter is running.

4. Caution

It is after 5 minutes that disassembling or checking the components could be performed as power supply OFF and the indicator turned off.

1.5 Useable Environment

. Caution

The inverter should be used in a non-condensed environment with temperature from $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ and relative humidity of 95% non-condense.

Caution

When the inverter top cover has removed, it can be used in a non-condensed environment with temperature from $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ and relative humidity of 95%, but the environment should be free from water and metal dust.

Chapter 2:
 Model description

2.1 Label description

2.2 Ordering Key

2.3 Type Selection

Voltage rating	Output voltage	Motor rating		Model	Dimension
		kW	HP		
$\begin{gathered} \text { 200-240VAC } \\ \text { (+10\%-15\%) } \\ \text { 1-phase } \end{gathered}$	$\begin{gathered} 0 \div 240 \mathrm{~V} \\ 3-\text { phase } \\ 0.1 \div 650 \mathrm{~Hz} \end{gathered}$	0.4	0.5	RVCFA1200040 (F)	A
		0.75	1.0	RVCFA1200075 (F)	A
		1.5	2.0	RVCFB1200150 (F)	B
		2.2	3.0	RVCFB1200220 (F)	B
$\begin{gathered} \text { 200-240VAC } \\ \text { (+10\%-15\%) } \\ \text { 3-phase } \end{gathered}$		0.40	0.50	RVCFA3200040	A
		0.75	1.0	RVCFA3200075	A
		1.5	2.0	RVCFA3200150	A
		2.2	3.0	RVCFB3200220	B
		3.7	5.0	RVCFB3200370	B
		5.5	7.5	RVCFC3200550	C
		7.5	10.0	RVCFC3200750	C
		11.0	15.0	RVCFD3201100	D
		15.0	20.0	RVCFD3201500	D
		18.5	25.0	RVCFD3201850	D
		22.0	30.0	RVCFE3202200	E
		30.0	40.0	RVCFE3203000	E
$\begin{gathered} \text { 380-480VAC } \\ \text { (+10\%-15\%) } \\ \text { 1-phase } \end{gathered}$	$\begin{gathered} 0 \div 480 \mathrm{~V} \\ 3-\text { phase } \\ 0.1 \div 650 \mathrm{~Hz} \end{gathered}$	0.75	1.0	RVCFA3400075 (F)	A
		1.5	2.0	RVCFA3400150 (F)	A
		2.2	3.0	RVCFB3400220 (F)	B
		3.7	5.0	RVCFB3400370 (F)	B
		5.5	7.5	RVCFC3400550 (F)	C
		7.5	10.0	RVCFC3400750 (F)	C
		11.0	15.0	RVCFC3401100 (F)	C
		15.0	20.0	RVCFD3401500	D
		18.5	25.0	RVCFD3401850	D
		22.0	30.0	RVCFD3202200	D
		30.0	40.0	RVCFE3403000	E
		37.0	50.0	RVCFE3403700	E
		45.0	60.0	RVCFF3404500	F
		55.0	75.0	RVCFF3405500	F

Chapter 3:
 Ambient Environment and Installation

3.1 Environment

The environment will directly affect the proper operation and the life span of the inverter, so install the inverter in an environment complying with the following conditions:

- Ambient temperature: $-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$; without cover: $-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$
- Avoid exposure to rain or moisture.
- Avoid direct sunlight.
- Avoid oil mist and salinity.
- Avoid erosive liquid and gas.
- Avoid dust, bats, and small metal pieces.
- Keep away from radioactive and flammable materials.
- Avoid electromagnetic interference (soldering machine, power machine).
- Avoid vibration (punching machine). Add a vibration-proof pad if the situation cannot be avoided.
- If several inverters are placed in the same control panel, add extra heat sinks to keep the temperature below $40^{\circ} \mathrm{C}$.

- Place the front side of the inverter onward and top upward to in favor of heat sink.
- Install the inverter according to the following figures: (take the dustproof cover off in favor of heat sinking if it is installed in a box or the environment allows to do so).

Air convection $-10^{\circ} \mathrm{C} . . .+40^{\circ} \mathrm{C}$
(a) Front view

3.2 Environmental precautions

Do not use the inverter in an environment with the following conditions:

3.3 Wiring Role

3.3.1 Notice for wiring

A. Screwdriver torque: Wiring with a screwdriver or other tools and follow the torque listed below:

Securing torque			
Horsepower	Power source	Nominal torque for TM1 terminal	
0.5/1/2 (3中)	200-240V	$\begin{gathered} 0.59 / 0.08 \\ (\text { LBS-FT/KG-M) } \end{gathered}$	$\begin{gathered} \text { 7.10/8.20 } \\ \text { (LBS-IN/KG-CM) } \end{gathered}$
1/2	380-480V		
$2(1 \phi) / 3 / 5 / 4.5 / 10$	200-240V	$\begin{gathered} 1.5 / 0.21 \\ (\mathrm{LBS}-\mathrm{FT} / \mathrm{KG}-\mathrm{M}) \end{gathered}$	$\begin{gathered} \text { 18.00/20.28 } \\ \text { (LBS-IN/KG-CM) } \end{gathered}$
3/5/7.5/10/15	380-480V		
15/20/25	200-240V	$\begin{gathered} 1.84 / 0.3 \\ \text { (LBS-FT/KG-M) } \end{gathered}$	$\begin{gathered} 22.1 / 30 \\ (\text { LBS-IN/KG-CM) } \end{gathered}$
20/25/30	380-480V		
30/40	200-240V	$\begin{aligned} & \text { 4.42/0.66 (LBS- } \\ & \text { FT/KG-M) } \end{aligned}$	$\begin{gathered} 53.1 / 66 \\ \text { (LBS-IN/KG-CM) } \end{gathered}$
40/50/60/75	380-480V		

B. Power wires:

Power wires are connecting to L1, L2, L3, T1, T2, T3, P, BR and P1. Choose wires in accordance with the following criteria:
(1) Use copper wires only. Deciding diameters of wires should be based on rating working at $105^{\circ} \mathrm{C}$.
(2) For rating voltage of wires, the minimum voltage of 240 VAC type is 300 V , and 480 VAC type is 600 V .
(3) For safety reason, the power wires should be fixed by type terminal

C. Control wires:

Control wires are wires connecting to TM2 control terminal. Choose the wire in accordance with the following criteria:
(1) Use copper wires only. Deciding diameters of wires should be based on rating working at $105^{\circ} \mathrm{C}$.
(2) To avoid noise interference, do not route the control wires in the same conduit with power wires and motor wires.
D. Nominal electrical specifications of the terminals Block: the following list is nominal values of TM1:

Horsepower	Power source	Volt	Amps
0.5/1/2 (3ф)	200-240V	600V	15A
1/2	380-480V		
5/7.5/10	200-240V		40A
2 (1ф/3/5/4.5/10/15	380-480V		
15/20/25	200-240V		80A
20/25/30	$380-480 \mathrm{~V}$		60A
30	200-240V		100A
40/50	380-480V		
40	200-240V		150A
60/75	380-480V		

Note: Nominal values of input and output signals (TM2) - follow the specifications of class 2 wiring.

3.3.2 Fuse Type

Drive input fuses are provided to disconnect the drive from power in the event that a component fails in the drive's power circuitry. The drive's electronic protection circuitry is designed to clear drive output short circuits and ground faults without blowing the drive input fuses. Below table shows the RVCF input fuse ratings. To protect the inverter most effectively, use fuses with current-limit function (RK5, CC/T TYPE FUSE FOR RVCF).

Model	Motor rating		Max Fuse Rating (A)	
	kW	HP	RK5 fuse	CC or T fuse
RVCFA1200040	0.4	0.5	10	20
RVCFA1200075	0.75	1.0	15	30
RVCFB1200150	1.5	2.0	20	40
RVCFB1200220	2.2	3.0	25	50
RVCFA3200040	0.40	0.50	8	10
RVCFA3200075	0.75	1.0	12	15
RVCFA3200150	1.5	2.0	15	20
RVCFB3200220	2.2	3.0	20	30
RVCFB3200370	3.7	5.0	30	50
RVCFC3200550	5.5	7.5	50	60
RVCFC3200750	7.5	10.0	60	70
RVCFD3201100	11.0	15.0	80	100
RVCFD3201500	15.0	20.0	100	125
RVCFD3201850	18.5	25.0	125	150
RVCFE3202200	22.0	30.0	160	200
RVCFE3203000	30.0	40.0	200	250
RVCFA3400075	0.75	1.0	60	10
RVCFA3400150	1.5	2.0	10	15
RVCFB3400220	2.2	3.0	10	20
RVCFB3400370	3.7	5.0	20	30
RVCFC3400550	5.5	7.5	25	35
RVCFC3400750	7.5	10.0	30	50
RVCFC3401100	11.0	15.0	50	60
RVCFD3401500	15.0	20.0	60	70
RVCFD3401850	18.5	25.0	70	80
RVCFD3202200	22.0	30.0	80	100
RVCFE3403000	30.0	40.0	100	125
RVCFE3403700	37.0	50.0	125	150
RVCFF3404500	45.0	60.0	150	200
RVCFF3405500	55.0	75.0	200	250

Notice

- To avoid shock hazards, do not touch any electrical component when the power is applied or just after five minutes the power plug is unplugged. The other action should be performed after the charge indicator went off.
- Do not perform wiring on the inverter while it is still electrified. Disregard of this notice could cause serious injure or death to persons.
This product is designed to use in Pollution Degree 2 environment or equivalent environments.

[^0]
3.3.3 Applicable specification of magnetic contactor and wires

Molded-case circuit breaker/magnetic contactor

- Carlo gavazzi bears no responsibility to service for failures caused by the following conditions:
(1) A molded-case circuit breaker is not installed, or an improper or overrated breaker is used, between the power source and the inverter.
(2) A magnetic contactor, a phase capacitor, or a burst absorber is connected between the inverter and the motor.

RVCF Model	Molded-case circuit breaker (max Amp)	Main circuit terminals (TM1)	Signial terminals (TM2)
RVCFA1200040	10A	Wire gauge $2.0 \mathrm{~mm}^{2}$	Wire gauge $0.75 \mathrm{~mm}^{2}(\# 18$ AWG)
RVCFA3200040			
RVCFA1200040	20A		
RVCFA3200040			
RVCFA1200040	30A	Wire gauge $3.5 \mathrm{~mm}{ }^{2}$	
RVCFA3200040			
RVCFA1200040			
RVCFA3200040			
RVCFB3200370			
RVCFC3200550	50A	Wire gauge $5.5 \mathrm{~mm}^{2}$	
RVCFC3200750	60A		
RVCFD3201100	100A	Wire gauge $14 \mathrm{~mm}{ }^{2}$	
RVCFD3201500		Wire gauge $22 \mathrm{~mm}^{2}$	
RVCFD3201850	150A		
RVCFE3202200	175A	Wire gauge 38mm ${ }^{2}$	
RVCFE3203000		Wire gauge $60 \mathrm{~mm}^{2}$	
RVCFA3400075	15A	Wire gauge $2.0 \mathrm{~mm}^{2}$	Wire gauge $0.75 \mathrm{~mm}^{2}$ (\#18 AWG), "terminal screw M3
RVCFA3400150			
RVCFB3400220			
RVCFB3400370			
RVCFC3400550	20A	Wire gauge $3.5 \mathrm{~mm}^{2}$	
RVCFC3400750	30A		
RVCFC3401100	50A	Wire gauge $5.5 \mathrm{~mm}{ }^{2}$	
RVCFD3401500		Wire gauge $8 \mathrm{~mm}{ }^{2}$	
RVCFD3401850	75A		
RVCFD3402200	100A	Wire gauge $14 \mathrm{~mm}{ }^{2}$	
RVCFE3403000		Wire gauge $22 \mathrm{~mm}^{2}$	
RVCFE3403700	125A		
RVCFF3404500	175A	Wire gauge 38mm ${ }^{2}$	
RVCFF3405500		Wire gauge $60 \mathrm{~mm}^{2}$	

- Use three-phase cage induction motor with capacity suitable for the inverter.
- One inverter is driving several motors, the total current of all motors running simultaneously must be less than the rated current of the inverter, and each motor has to be equipped with a proper thermal relay.
- Do not add capacitive component, such as a phase capacitor, LC or RC, between the inverter and the motor.

3.3.4 Precautions for peripheral applications

Power supply:

- Make sure the voltage applied is correct to avoid damaging the inverter.
- A molded-case circuit breaker must be installed between the AC source and the inverter.
Molded-case circuit breaker:
- Use a molded-case circuit breaker that conforms to the rated voltage and current of the inverter to control the power ON/OFF and protect the inverter.
- Do not use the inverter as the switch for run/stop switch.

Leakage breaker:

- Install a leakage breaker to prevent error operation caused by electric leakage and to protect operators.
- Setting current should be 200 mA or above and the operating time at 0.1 second or longer to prevent malfunction.

Magnetic contactor:

- Normal operations do not need a magnetic contactor. But a contactor has to be installed in primiary side when performing functions such as external control and auto restart after power failure, or when using brake controller.
- Do not use the magnetic contactor as the run/stop switch of the inverter. AC reactor for power improvement:
- When inverters below $230 \mathrm{~V} / 480 \mathrm{~V} 15 \mathrm{~kW}$ are supplied with high capacity (above 600kVA) power source or an AC reactor can be connected to improve the power performance.
Install fast action fuse:
- To ensure the safety of peripheral devices, please install the fast action fuse. Regarding the specification, please refer to pag 15.
Input noise filter:
- A filter must be installed when there are inductive load around the inverter. Inverter:
- Input power terminals L1, L2, and L3 can be used in any sequence regardless of phases.
- Output terminals T1, T2, and T3 are connected to U, V, and W terminals of the motor. If the motor is reversed while the inverter is forward, just swap any two terminals of T1, T2, and T3.
- To avoid damaging the inverter, do not connect the input terminals T1, T2, and T3 to AC power.
- Connect the ground terminal properly. Class 240V: Rg<100 ; Class 480V: $\mathrm{Rg}<10 \Omega$.

Make external connections according to the following instruction. Check connections after wiring to make sure all connections are correct. (Do not use the control circuit buzzer to check connections).

- The inverter uses dedicated power line
- A general noise filter may not provide rightful results

Correct

- Add a noise filter or separation transformer whenter shares the power line with other machines.

(A) Main circuit's wiring must separate from other high voltage or high current power line to avoid noise interference. Refer to the figures below:
- A noise filter in the output of the main circuit can suppress conductive noise.To prevent radiative noise, the wires should be put in a metal pipe and distance from signal lines of other control machines for more than 30 cm .

- When the connection between the inverter and the motor is too long, consider the voltage drop of the circuit. Phase-to-phase voltage drop $(\mathrm{V})=\sqrt{ } 3^{*}$ resistance of wire $(\Omega / \mathrm{km})^{\star}$ length of line $(\mathrm{m})^{\star}$ current ${ }^{\star} 10^{-3}$.
- The number of carriers must be adjusted based on the length of the line.

The length of the line between the inverter and the motor	Below 25m	Below 50m	Below 100 m	Over 100 m
Number of carriers allowed	Below 16 kHz	Below 12 kHz	Below 8 kHz	Below 5 kHz
Settings of 3-22 parameter	16	12	8	5

(B) The wiring of the control circuit must be separated and routed away from the main circuit control line or other high voltage or current power lines to avoid noise interference.

- To avoid error actions caused by noise interference, shield the control circuit wiring with a twisted wire, and connect the shielded wire to a ground terminal. Refer to the figure below.
The wiring distance should not exceed 50m.

(C) Ground the ground terminal of the inverter properly. For 230 V class ground 100Ω or less; for 480 V class ground 10Ω or less.
- Ground wiring is based on the electrical equipment technical basis (AWG). The shorter, the better.
- Do not share the ground of the inverter to other high current loads (welding machine, high power motor). Connect the terminals to ground respectively.
- Do not make a loop when several inverters share a common ground point.u

(a) Good

(b) Good

(c) Bad
(D) To ensure maximum safety, use proper wire gauges (AWG) for the main power circuit and control circuit according to relative regulations.
(E) After wiring, check that the wiring is correct, wires are intact, and terminal screws are secured.

3.4.1 Products Individual Specifications

Model	Motor rating			Voltage rating	Output voltage	Current (A)		Allowable momentary power loss time (s)
	kW	HP	kVA			Input	Output	
RVCFA1200040	0.4	0.5	1.2	$\begin{gathered} 200-240 \mathrm{VAC} \\ (+10 \%-15 \%) \\ 1 \text {-phase } \end{gathered}$	$\begin{gathered} 0 \div 240 \mathrm{~V} \\ 3-\text { phase } \\ 0.1 \div 650 \mathrm{~Hz} \end{gathered}$	8.5	3.1	1.0
RVCFA1200075	0.75	1.0	1.7			12	4.5	
RVCFB1200150	1.5	2.0	2.9			16	7.5	2.0
RVCFB1200220	2.2	3.0	4.0			23.9	10.5	
RVCFA3200040	0.40	0.50	1.2	$\begin{gathered} \text { 200-240VAC } \\ \text { (+10\% -15\%) } \\ 3 \text {-phase } \end{gathered}$		4.5	3.1	1.0
RVCFA3200075	0.75	1.0	1.7			6.5	4.5	
RVCFA3200150	1.5	2.0	2.9			11.0	7.5	2.0
RVCFB3200220	2.2	3.0	4.0			12.5	10.5	
RVCFB3200370	3.7	5.0	6.7			20.5	17.5	
RVCFC3200550	5.5	7.5	9.9			33.0	26.0	
RVCFC3200750	7.5	10.0	13.3			42.0	35.0	
RVCFD3201100	11.0	15.0	20.6			57.0	48.0	
RVCFD3201500	15.0	20.0	27.4			70.0	64.0	
RVCFD3201850	18.5	25.0	34.0			85.0	80.0	
RVCFE3202200	22.0	30.0	41.0			108.0	96.0	
RVCFE3203000	30.0	40.0	54.0			138.0	130.0	
RVCFA3400075	0.75	1.0	1.7	$\begin{gathered} \text { 380-480VAC } \\ \text { (+10\%-15\%) } \\ \text { 3-phase } \end{gathered}$	$0 \div 480 \mathrm{~V}$ 3-phase $0.1 \div 650 \mathrm{~Hz}$	4.2	2.3	1.0
RVCFA3400150	1.5	2.0	2.6			5.6	3.8	
RVCFB3400220	2.2	3.0	4.0			7.3	5.2	2.0
RVCFB3400370	3.7	5.0	6.7			11.6	8.8	
RVCFC3400550	5.5	7.5	9.9			17.0	13.0	
RVCFC3400750	7.5	10.0	13.3			23.0	17.5	
RVCFC3401100	11.0	15.0	19.1			31.0	25.0	
RVCFD3401500	15.0	20.0	27.4			38.0	32.0	
RVCFD3401850	18.5	25.0	34.0			48.0	40.0	
RVCFD3202200	22.0	30.0	41.0			56.0	48.0	
RVCFE3403000	30.0	40.0	54.0			75.0	64.0	
RVCFE3403700	37.0	50.0	68.0			92.0	80.0	
RVCFF3404500	45.0	60.0	82.0			112.0	96.0	
RVCFF3405500	55.0	75.0	110.0			142.0	128.0	

3.4.2 General Specifications

Item		RVCF TYPE
Control Mode		V/F or Sensorless Control
$\overline{3}$000000000O	Range	0.1~650.0Hz
	Start control torque	150\%/1Hz (Current Vector)
	Speed control range	1:50 (Current Vector)
	Speed Control Precision	$\pm 0.5 \%$ (Current Vector)
	Setting resolution	Digital: 0.01 Hz (Note *1) : Analog: $0.06 \mathrm{~Hz} / 60 \mathrm{~Hz}$ (10bits)
	Keypad setting	Set directly with $\boldsymbol{\triangle} \boldsymbol{\nabla}$ keys or the VR on the keypad
	Display Function	Four digital LED (or $2^{*} 16$ LCD) and status indicator; display frequency/ speed/ line speed/ DC voltage/ Output voltage/ Current/ Rotation direction/ Inverter parameter/ Trouble Log/ Program Version
	External signal setting	1. External variable resistor/ $0-10 \mathrm{~V} / 0-20 \mathrm{~mA} / 10-0 \mathrm{~V} / 20-0 \mathrm{~mA}$ 2. Performs up/down controls, speed control or automatic procedure control with multifunctional contacts on the terminal block (TM2)
	Frequency Limit Function	Respectively setting upper/lower frequency limits and three-stage prohibited frequencies
	Carrier frequency	2~16kHz
	V/F pattern	18-fixed patterns, 1 programmable pattern
	Acc/Dec control	Two-stage Acc/Dec time (0.1~3600 seconds) curves (refer to descriptions on 3-05)
	Multifunctional analog output	6 functions (refer to description on 8-00/8-01)
	Multifunctional input	30 functions (refer to description on 5-00~5-06)
	Multifunctional output	16 functions (refer to description on 8-02~8-03)
	Digital Input Signal	NPN (SINK) / PNP (SOURCE) toggle
	Other Function	Momentary Power Loss Restart, Speed Search, Overload Detection, 8 preset speeds (PLC use 16 preset speeds) . Acc/Dec Switch (2 Stages), S Curves, 3-wire Control, PID control, torque boost, Slip Compensation, Frequency Upper/ Lower Limit, Auto energy saving, Modbus slave and PC/PDA Link, Auto Restart, Built-in Simple PLCFunction.
Communication Control		1. Control by RS232 or RS485 2. One to one or One to more (RS485 ONLY) control. 3. BAUD RATE/STOP BIT/PARITY/bit can be set
Braking Torque		About 20\%, the model built-in braking transistor and connected braking resistor is 100\%
Input Displacement Factor (cos')		>0.97
Operation temperature		$-10 \sim 50^{\circ} \mathrm{C}$ (Note 2)
Storage temperature		$-20 \sim 60^{\circ} \mathrm{C}$
Humidity		0~95\% Relative Humidity (Non-condense)
Max altitude		Below 1000m
Vibration Sustention		1G (9.8m/s ${ }^{2}$)
EMC		Comply with requirement EN 61800-3 (with optional Filter)
LVD		Comply with requirement EN 50178
Enclosure		IP00 or IP20 (NEMA 1 by external box attached)
Safety Level		UL 508C

Item		RVCF TYPE
	Overload protection	The relays to protect the motor (the curve can be set) and the inverter (150\% / 1min)
	FUSE protection	The motor stops after FUSE melt
	Over Voltage	200 V class: DC Voltage>410V - 400V class: DC Voltage $>820 \mathrm{~V}$
	Under Voltage	200V class: DC Voltage<190V-400V class: DC Voltage<380V
	Momentary Power Loss Restart	Stop for more than 15 ms -power-loss can be restarted with spin start after momentary power loss in Max 2 sec.
	Stall Prevention	Stall prevention for Acceleration/ Deceleration/ Operation.
	Short-circuit output terminal	Electronic Circuit Protection
	Grounding Fault	Electronic Circuit Protection
	Other Function	Protection for overheating of heat sink, over torque detection, error contact control, reverse restriction, restrictions for direct start after power up and error recovery, parameter lock up.

Note 1: The setting resolution of above 100 Hz is 0.1 Hz when controlled with operation keypad, and 0.01 Hz when controlled using computer PC or programmable controller (PLC)
Note 2: $\quad-10 \sim 50^{\circ} \mathrm{C}$ in distributor (without dustproof cover)
$-10 \sim 40^{\circ} \mathrm{C}$ outside distributor (with dustproof cover)
Note 3: 230 V 15 HP and above capacity are not CE complied

3.5 Wiring diagram RVCF series inverter Wiring diagram I:

Valid for 0.4-1.5 kW at 240V and 0.75-1.5 kW at 480V

Wiring diagram II:

Valid for 2.2-7.5 kW at 240V and 2.2-55 kW at 480V

3.6 Description of inverter terminals Descriptions of main circuit terminals

Supply terminal	
1-phase	L1, L3(N)
3 -phase	L1, L2, L3
Motor terminal	T1(U), T2(V), T3(W)
Multifunctional input terminal Input terminal	S1~S6 (and AIN: High level $>8 \mathrm{~V}$, low level $<2 \mathrm{~V}$)
Common terminal	
24V	PNP input
COM	NPN input (for 0.4~1.5kW at 220 V and $0.75 \sim 1.5 \mathrm{~kW}$ at 480 V drive)
24G	NPN input (for 2.2~30kW at 220 V and $2.2 \mathrm{~kW} \sim 55 \mathrm{~kW}$ at 480 V drive)
Multifunctional output terminal	
R1A, R1B, R1C	Change over relay contact
R2A, R2B	NO relay contact
Analog input terminal Input terminal	
AIN	for all drives
Al2	for 2.2~30kW at 220 V and $2.2 \mathrm{~kW} \sim 55 \mathrm{~kW}$ at 480 V drive
S6	for $0.4 \sim 1.5 \mathrm{~kW}$ at 220 V and $0.75 \sim 1.5 \mathrm{~kW}$ at 480 V drive
Common terminal	
COM	for $0.4 \sim 1.5 \mathrm{~kW}$ at 220 V and
AGND	for 2.2~30kW at 220 V and $2.2 \mathrm{~kW} \sim 55 \mathrm{~kW}$ at 480 V drive

Analog output terminal Output terminal	
FM+	for all drives
Common terminal	
COM	for $0.4 \sim 1.5 \mathrm{~kW}$ at 220 V and
	$0.75 \sim 1.5 \mathrm{~kW}$ at 480 V drive
AGND	for 2.2~30kW at 220 V and
	$2.2 \mathrm{~kW} \sim 55 \mathrm{~kW}$ at 480V
	drive
Braking resistor	
P, BR	for 0.4~7.5kW at 220 V and
	$0.75 \sim 11 \mathrm{~kW}$ at 480 V drive
B1/P, B2	for $11 \sim 15 \mathrm{~kW}$ at 220 V and
	15 kW at 480V drive
Through braking unit	for $18.5 \sim 30 \mathrm{~kW}$ at 220 V
	and $18.5 \sim 55 \mathrm{~kW}$ at 480 V
	drive
DC reactor	
P, P1	for 0.4~7.5kW at 220 V and
	$0.75 \sim 11 \mathrm{~kW}$ at 480 V drive
Not available	for 11~30kW at 220 V and
	$15 \sim 55 \mathrm{~kW}$ at 480 V drive
Braking unit	
+, -	for 18.5~30kW at 220 V
	and $18.5 \sim 55 \mathrm{~kW}$ at 480V
	drive
Not available	for 0.4~15kW at 220 V and
	$0.75 \sim 15 \mathrm{~kW}$ at 480V drive

	SW1	SW2/SW3
\square	NPN (sink) input	0~10VDC analog signal
$\square \square$	PNP (source) input	0~20mA analog signal
\square		

Termial 3 (valid for $18.5-30 \mathrm{~kW}$ at 240 V and $18.5-55 \mathrm{~kW}$ at 480V)

3.7 Outline Dimensions

(1) Size A: Single phase RVCFA1200040, RVCFA1200075

Three phase RVCFA3200040, RVCFA3200075, RVCFA3200150, RVCFA3400075, RVCFA3400150

(2) Size B: Single phase RVCFB1200150, RVCFB1200220

Three phase RVCFB3200220, RVCFB3200370, RVCFB3400220, RVCFB3400370

(3) Size C: Three phase RVCFC3200550, RVCFC3200750, RVCFC3400550, RVCFC3400750, RVCFB3401100

(4) Size D: Three phase RVCFD3201100, RVCFD3201500, RVCFD3201850 RVCFD3401500, RVCFD3401850, RVCFD3402200

(5) Size E: Three phase RVCFE3202200, RVCFE3203000, RVCFE3403000, RVCFE3403700

(6) Size F: Three phase RVCFF3404500, RVCFE3405500

RVCFA1200040 RVCFA1200075 RVCFB1200150 RVCFB1200220 RVCFA3200040 RVCFA3200075						
	$1.2(1.3)$	$1.2(1.3)$	$1.5(1.8)$	$1.9(2.3)$	1.2	1.2
	RVCFA3200150	RVCFB3200220	RVCFB3200370	RVCFC3200550	RVCFC3200750	RVCFD32001100
	1.2	1.75	5.6	5.6	5.6	15
	RVCFD3201500	RVCFD3201850	RVCFE3202200	RVCFE3203000	RVCFA3400075	RVCFA3200150
	15	15	33	34	$1.2(1.3)$	$1.2(1.3)$
	RVCFB3400220	RVCFB3400370	RVCFC3400550	RVCFC3400750	RVCFC3401100	RVCFD3401500
	$1.8(2.2)$	$1.8(2.2)$	$5.6(6.6)$	$5.6(6.6)$	15	15
	RVCFD3401850	RVCFD3402200	RVCFE3403000	RVCFE3403700	RVCFF3404500	RVCFF3405500
	15	15	33	33	50	50

Chapter 4: Software Index

4.1 Keypad Description

4.1.1Keypad Display and Operation Instruction

1. SEQ LED: $1-00=0001$, LED Lit.
2. FRQ LED: $1-06=0001 / 0002 / 0003 / 0004 / 0005$, LED Lit
3. FWD LED:Forward Direction, LED action (Flash in stop, Keep Lit in operation).
4. REV LED: Reverse Direction, LED action (Flash in stop, Keep Lit in operation).
5. Four action of FUN, Hz/RPM, VOLT, AMP LED and display of four 7-segment display, refer to operation description of the keypad.
6. LCD keypad without FUN, Hz/RPM, VOLT, AMP LED and FREQ.SET knob.

. Caution

To avoid impairing the keypad, do not operate it with screwdriver or sharp and hard tool.

Remote/Local Mode

- Local mode - Operation Command by RUN/STOP key on keypad
- Frequency Command by $\boldsymbol{\Delta}$ key on keypad
- Remote mode - Operating Command by 1-00
- Frequency Command by 1-06

To Change the Remote/Local mode, you must push FWD/REV and $\boldsymbol{\Delta} /$ RESET key at the same time. The Remote /Local mode of change can used in STOP mode, it can't used in Run mode.

4.1.2 Operation Instruction of the keypad

*1: The inverter will flash the current setting of 0-07 (power supply voltage) after power up.
*2: 4-04, 4-05 determines the displaying of frequency, speed or line speed.
*3: It is not necessary to press ENTER key when stopped for modification. Refer to example 1, 2.
*4: Whether output current, output voltage, DC voltage, status of built-in PLC is displayed or not is determined by 4-00 ~ 4-03 respectively.

4.1.3 Operation Instruction of the LED keypad

:LED Light Flash

5 second later or Enter operation signal or Press DSP to modify frequency.

4.1.4 Operation Instruction of the LCD keypad

4.1.5 Keypad Operating Example

Example 1. Modify frequency in stopping

Example 2. Modify frequency in operating

Note : XX.XX shows the present output frequency. The value ranges from 59.58 to OHz , depending on the length of time the key v pressed.

Example 3. Modify frequency in running

Example 4. Modify the Value of Paramter

Example 5. Operation Control

[^1]
4.2 Control Mode Selection

RVCF Series inverter has three control modes:

1. General Sensorless Control Mode
2. VT Sensorless Control Mode (Special for Blower, Pump).
3. V/F Control Mode.

The user can choose these modes with the digital keypad according to the application characteristics. The factory setting is general sensorless control mode. Before operation, please set the control mode and the relative parameters of the motor in accordance with the following flow chart. (The sensorless control mode only suits for the inverter with same capacity comparing to the motor, or a grade bigger or smaller one).

Note:

1. Use V/F Control Mode:
(1) Use one inverter to drive several motors simultaneously
(2) Motor's nameplate is unknown or motor's specifications are too special, it will cause Auto-tuning fault.
(3) Specification of inverter and motor differ more than 1 class.
2. One inverter drives several motors (Only V/F mode available), set the motor parameter complying with the following rules:
(1) As for the current, sum the rated current of all motors.
(2) As for others, input correct VF Pattern parameter (10-4~10-9).
3. When the nameplate of the motor is unknown, the inverter will set the internal parameter according to the standard CARLO GAVAZZI motor.
4. When parameter 0-00 does set to 0002, the keypad will display 'Err2' in performing Auto tuning.
5. In SENSORLESS MODE control, the max. \& min. value of 0-01~0-05 will be limited by grade upper or lower than CARLO GAVAZZI standard motor specification. In VF MODE control, there is no limitation.

4.3 RVCF Programmable Functions List

Parameter Group No.	
$0-$	Drive Operation Mode
$1-$	Start/Stop and Frequency Control Modes
$2-$	Manual/Automatic Restart Modes
$3-$	Operating Parameters
$4-$	Digital Display Operation Mode
$5-$	Multifunction Input Terminals (MFIT)
$6-$	Jog, and Preset (MFIT) Speed Setting on Keypad
$7-$	Analog Input Signal Operation
$8-$	Multifunction Output Relays and Output Signal Operation
$9-$	Drive and Load Protection Modes
$10-$	Volts/Hz Pattern Operation Mode
$11-$	PID Operation Mode
$12-$	PID "Limits" and "Out of Range" Mode
$13-$	Communication Mode
$14-$	Motor Auto-Tuning Parameters
$15-$	Drive Status and Function Reset

0- Drive Operation Mode

Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
$0-00$	(Control Mode)	Control Mode	O000: Sensorless (General Purpose) 0001:Sensorless (Variable Torque) 0002: Volts/Hz (Refer to Parameter Group 10- Volts/Hz Mode)	0000	$* 3$

1-Start/Stop and Frequency Control Modes					
Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
1-00	(Run Source)	Run Command Source Selection	0000: Keypad 0001: External Run/Stop Control (See 1-01) 0002: Communication 0003: Built-In PLC	0000	
1-01	(MFIT Run Mode)	Operation Mode with External Terminals (MFIT)	0000: Forward/StopReverse/Stop 0001: Run/StopForward/Reverse 0002: 3-Wire Control ModeRun/Stop	0000	
1-02	(Reverse Oper)	Prohibition of Reverse operation	0000: Enable Reverse Command 0001: Disable Reverse Command	0000	
1-03	(Keypad Stop)	Keypad Stop Button	0000: Stop Button Enabled 0001: Stop Button Disabled	0000	
1-04	(Starting Method)	Starting Method Selection	0000: Start from zero 0001: Start from speed search	0000	
1-05	(Stopping Method)	Stopping Method Selection	0000: Controlled Deceleration-to-Stop with DC Injection Braking (Rapid Stop) 0001: Free run Stop	0000	
1-06	(Frequency Source)	Frequency Command Source Selection	0000: Keypad 0001: Potentiometer on Keypad 0002: External Analog Signal Input or Remote Potentiometer 0003: Up/Down Frequency Control Using MFIT (S1-S6) 0004: Communication setting frequency 0005: Impulse (S5) setting frequency (ver2.3)	0000	
1-07	(Keypad Up/Down)	Keypad Operation with Up/Down Keys in Run Mode	0000: ‘Enter’ must be pressed after frequency change with Up/Down Keys on keypad. 0001: Frequency will be changed directly when Up/Down Keys are Pressed	0000	

2- Manual/Automatic Restart Modes	Factory Function Code No.					LCD Display

3- Operating Parameters

Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
3-00	(Freq Upper Limit)	Frequency Upper Limit (Hz)	0.01-650.00	50.00/60.00	*4
3-01	(Freq Lower Limit)	Frequency Lower Limit (Hz)	0.00-650.00	0.00	
3-02	(Accel Time 1)	Acceleration Time \#1 (s)	0.1-3600.0	10.0	*1
3-03	(Decel Time 1)	Deceleration Time \#1 (s)	0.1-3600.0	10.0	*1
3-04	(S-Curve 1)	S-Curve Acc/Dec \#1 (s)	0.0-4.0	0.2	
				1.0 *	
3-05	(S-Curve 2)	S-Curve Acc/Dec \#2 (s)	0.0-4.0	0.2	
				1.0 *	
3-06	(Accel Time 2)	Acceleration Time \# 2 (MFIT) (s)	0.1-3600.0	10.0	*1
3-07	(Decel Time 2)	Deceleration Time \# 2 (MFIT) (s)	0.1-3600.0	10.0	*1
3-08	(Jog Accel Time)	Jog Acceleration Time (MFIT) (s)	0.1-25.5	0.5	*1
3-09	(Jog Decel Time)	Jog Deceleration Time (MFIT) (s)	0.1-25.5	0.5	*1
3-10	(DCInj Start Freq)	DC Injection Brake Start Frequency (Hz)	0.1-10.0	1.5	
3-11	(DCInj Level)	DC Injection Brake Level (\%)	0.0-20.0	5.0	*7
3-12	(DCInj Time)	DC Injection Brake Time (s)	0.0-25.5	0.5	
3-13	(Skip Freq 1)	Skip Frequency \#1 (Hz)	0.00-650.00	0.0	*1
3-14	(Skip Freq 2)	Skip Frequency \#2 (Hz)	0.00-650.00	0.0	*1
3-15	(Skip Freq 3)	Skip Frequency \#3 (Hz)	0.00-650.00	0.0	*1
3-16	(Skip Bandwidth)	$\underset{\substack{\text { Skip } \\(\pm H z)}}{ }$ Frequency Bandwidth	0.00-30.00	0.0	*1
3-17	(Parameter Lock)	Parameter Lock	0000: Enable all Functions 0001: 6-00-6-08 cannot be changed 0002: All Functions Except 6-00 - 6-08 cannot be changed 0003: Disable All Function	0000	
3-18	(ROM Pack Operate)	Copy Unit	0000: Disable 0001: Inverter to Copy Unit 0002: Copy Unit to Inverter 0003: Verify	0000	

3- Operating Parameters					
Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
3-19	(Fan Control)	Fan Control	0000: Auto (Depend on temp.) 0001: Operate while in RUN mode 0002: Always Run 0003: Always Stop	0000	
3-20	(Energy Save Mode)	Energy Saving Mode *1	0000: Disabled 0001: Controlled by MFIT at Set Frequency	0000	*6
3-21	(Energy Save Gain)	Energy Saving Gain (\%) *1	0-100	80	*6
3-22	(Carrier Freq)	Carrier Frequency (kHz)	2-16	10	
3-23	(Center F of Trav)	Center Frequency (CF) of Traverse Run (\%)	5.00-100.00	20.00	
3-24	(Amplit. of Trav)	Amplitude (A) of Traverse Run (\%)	0.1-20.0	10.0	
3-25	(Drop of Trav)	Drop (D) of Traverse Run (\%)	0.0-50.0	0.0	
3-26	(Acc T of Trav)	Acc Time (AT) of Traverse Run (s)	0.5-60.0	10.0	
3-27	(Dec T of Trav)	Dec Time (DT) of Traverse Run (s)	0.5-60.0	10.0	
3-28	(Rise Deviated)	Rise (X) Deviated Traverse (\%)	0.0-20.0	10.0	
3-29	(Lower Deviated)	Lower (Y) Deviated Traverse (\%)	0.0-20.0	10.0	
3-30	(Start Freq)	Start frequency (Hz)	0.0-10.0	0.0	

Nota:

1. Energy Saving Mode is available only under Volts/Hz Mode $(0-00=0002)$.

4- Digital Display Operation Mode					
Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
4-00	(Motor Curr Disp)	Motor Current Display Selection		0000	*1
4-01	(Motor Volt Disp)	Motor Voltage Display Selection	0000:Disable Motor Voltage Display 0001: Enable Motor Voltage Display	0000	*1
4-02	(Bus Volt Disp)	DC Bus Voltage Display Selection	0000:Disable 0001: Display Enable DisplayBus VoltageVoltage	0000	*1
4-03	(PLC Status Disp)	PLC Status Display Selection	0000:Disable 0001: Display Enable Ena DisplayPLCStatus	0000	*1
4-04	(Display Scaling)	Custom Units (Line Speed) Value	0-9999	1800	*1
4-05	(Display Units)	Custom Units (Line Speed) Display Mode	0000: Drive Output Frequency is Displayed 0001: Line Speed is Displayed in Integer (xxxx) 0002: Line Speed is Displayed with One Decimal Place (xxx.x) 0003: Line Speed is Displayed with Two Decimal Places (xx.xx) 0004: Line Speed is Displayed with Three Decimal Places ($\mathrm{x} . \mathrm{xxx}$)	0000	*1
4-06	(PID Fdbk Display)	PID Feedback Display Selection	0000:Disable PID Feedback 0001: Display Enable PID Display	0000	*1

5- Multifunction Input Terminals (MFIT)

Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
5-00	(MFIT S1 Sel)	Multifunction Input Term. S1	0000: Forward/Stop Command ${ }^{\text {Note }} 1$ 0001: Reverse/Stop Command ${ }^{\text {Note2 }}$ 0002: Preset Speed \# 1 (6-02) 0003: Preset Speed \# 2 (6-03) 0004: Preset Speed \# 3 (6-05)	0000	
5-01	(MFIT S2 Sel)	Multifunction Input Term. S2	0005: Jog (6-01) 0006: Acc/Dec \# 2 0007: Emergency Stop A Contact 0008: Base Block 0009: Speed Search	0001	
5-02	(MFIT S3 Sel)	Multifunction Input Term. S3	0010: Energy Saving 0011: Control Signal Selection 0012: Communication Selection 0013: Acc/Dec Disabled 0014: Up Command	0002	
5-03	(MFIT S4 Sel)	Multifunction Input Term. S4	0016: Master/Auxiliary Speed 0017: PID Function Disabled 0018: Reset 0019: Encoder input terminal (terminal S5)	0003	
5-04	(MFIT S5 Sel)	Multifunction Input Term. S5	0020: PID feedback signal A12 (terminal AI2) 0021: Al2 Bias signal 1 input (terminal Al2) 0022: AI2 Bias signal 2 input	0004	
5-05	(MFIT S6 Sel)	Multifunction Input Term. S6	(terminal Al2) 0023: Analog input (terminal AIN) 0024: PLC Application 0025: Traverse Run 0026: Traverse run upper deviation	0018	
5-06	(MFIT AIN Sel)	Multifunction Input Term. AIN	0028: Power Source Detect for KEB Function 0029: Emergency Stop B Contact *7	0023	
5-07	(MFIT Scan Time)	Multifunction terminal S1~S6 and AIN signal confirm the scan times (ms x4)	1-100	5	

5- Multifunction Input Terminals (MFIT)					
Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
5-08	(Stop Sel by MFIT)	Stop Mode Using MFIT	0000: When the MFITs are Programmed for Up/Down Frequency Control, the Set Frequency will remain when the Drive stops. And when the Drive stops, Up/Down Function Disabled. 0001: Up/Down is used. The preset frequency is reset to OHz as the inverter stops. 0002: When the MFITs are Programmed for Up/Down Frequency Control, the Set Frequency will remain when the Drive stops. And when the Drive stops, Up/Down Function Enabled. *7	0000	
5-09	(Step Up/Down Fun)	Step of Up/Down Function (Hz)	0.00-5.00	0.00	
5-10	(Pulse Inp. Mult.)	Impulse input frequency time ratio	0.001-9.999	1.000	*7
5-11	(Ref.Source2)	Select auxiliary frequency source (AIN)	0000: Frequency refer to 6-00. 0001: Frequency refer to the VR analog signal on the Keypad. 0002: Frequency refer to the VR analog signal on TM2. 0003: Frequency refer to the frequency value which is calculated by Up/Down on TM2. 0004: Frequency refer to the input communication frequency	0	*7
5-12	(Al2 Function)	Al2 Function Set ${ }^{\text {Note3 }}$	0020: PID Feedback Signal Al2 (Terminal Al2) 0021: Al2 Bias Signal 1 Input (Terminal Al2) 0022: Al2 Bias Signal 2 Input (Terminal Al2)	0020	*11

Notes: 1. To switch to Run/Stop with Function 1-01 $=0001$.
2. To switch to Forward/Reverse with Function 1-01 $=0001$.
3. For $2.2 \sim 7.5 \mathrm{KW}$ at 230 V and $2.2 \sim 11 \mathrm{~kW}$ at 480 V only.

6- Jog, and Preset (MFIT) Frequency Setting on Keypad

Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
$6-00$	(Keypad Freq)	Keypad Frequency (Hz)	$0.00-650.00$	5.00	${ }^{*} 1$
$6-01$	(Jog Freq)	Jog Frequency (Hz)	$0.00-650.00$	2.00	${ }^{*} 1$
$6-02$	(Preset Speed \#1)	Preset Speed $\mathrm{n}^{\circ} 1(\mathrm{~Hz})$	$0.00-650.00$	5.00	${ }^{*} 1$
$6-03$	(Preset Speed \#2)	Preset Speed $\mathrm{n}^{\circ} 2(\mathrm{~Hz})$	$0.00-650.00$	10.00	${ }^{\circ} 1$
$6-04$	(Preset Speed \#3)	Preset Speed $\mathrm{n}^{\circ} 3(\mathrm{~Hz})$	$0.00-650.00$	20.00	${ }^{\circ} 1$
$6-05$	(Preset Speed \#4)	Preset Speed $\mathrm{n}^{\circ} 4(\mathrm{~Hz})$	$0.00-650.00$	30.00	${ }^{*} 1$
$6-06$	(Preset Speed \#5)	Preset Speed $\mathrm{n}^{\circ} 5(\mathrm{~Hz})$	$0.00-650.00$	40.00	${ }^{\circ} 1$
$6-07$	(Preset Speed \#6)	Preset Speed $\mathrm{n}^{\circ} 6(\mathrm{~Hz})$	$0.00-650.00$	50.00	${ }^{\circ} 1$
$6-08$	(Preset Speed \#7)	Preset Speed $\mathrm{n}^{\circ} 7(\mathrm{~Hz})$	$0.00-650.00$	60.00	${ }^{1} 1$

7- Analog Input Signal Operation Mode

Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
7-00	(AIN Gain)	AIN Gain (\%)	0-1000*10	100	*1
7-01	(AIN Offset)	AIN Bias (\%)	0-100	0	*1
7-02	(AIN Bias)	AIN Bias Selection	0000: Positive 0001: Negative	0000	*1
7-03	(AIN Slope)	AIN Slope	0000: Positive 0001: Negative	0000	*1
7-04	(AIN Scan Time)	AIN Signal Verification Scan Time (AIN, Al2) (mSec x 2)	1-100	50	*1
7-05	(AI2 Gain)	Al2 Gain (\%)	0-200	100	*1

Notes: 7-00~7-04 is available when 5-06=0023 (AIN term.=Analog input)

8- Multifunction Output Relays and Output Signal Operation Mode

Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
8-00	(AO Mode Sel)	Analog Output Voltage Mode (0-10 VDC, Term. FM+)	0000: Output Frequency 0001: Frequency Setting 0002: Output Voltage 0003: DC Voltage 0004: Output Current 0005: PID Feedback *7	0000	*1
8-01	(AO Gain)	Analog Output Gain (\%)	0-200	100	*1
8-02	(Relay R1 Sel)	Output Relay R1 Operation Mode	0000: Run 0001: Frequency Reached (Frequency Command) (Set Frequency ± 8-05) 0002: Set Frequency $(8-04 \pm 8-05)$ 0003: Frequency Threshold Level (>8-04)-Frequency Reached 0004: Frequency Threshold Level (<8-04)-Frequency Reached 0005: Over torque Threshold Level 0006: Fault 0007: Auto Restart	0006	*1
8-03	(Relay R2 Sel)	Output Relay R2 Operation Mode	0008: Momentary AC Power Loss 0009: Emergency Stop Mode 0010: Coast-to-Stop Mode 0011: Motor Overload Protection 0012: Drive Overload Protection 0013: PID Feedback Signal Loss 0014: PLC Operation 0015: Power On *7	0000	*1
8-04	(Freq Agree)	Frequency Reached output (Hz) (Refer to 8-02 = 0001)	0.00-650.00	0.00	*1
8-05	(Freq Agree width)	Frequency Reached Bandwidth ($\pm \mathrm{Hz}$)	0.00-30.00	2.00	*1

9- Drive and Load Protection Modes					
Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
9-00	(Trip ACC Sel)	Trip Prevention Selection During Acceleration	0000: Enable Trip Prevention During Acceleration 0001: Disable Trip Prevention During Acceleration	0000	
9-01	(Trip ACC Level)	Trip Prevention Level During Acceleration (\%)	50-300	$\begin{aligned} & 200 \\ & 150 \text { *9 } \end{aligned}$	
9-02	(Trip DEC Sel)	Trip Prevention Selection During Deceleration	0000: Enable Trip Prevention During Deceleration 0001: Disable Trip Prevention During Deceleration	0000	
9-03	(Trip DEC Level)	Trip Prevention Level During Deceleration (\%)	50-300	$\begin{aligned} & 200 \\ & 150 \text { *9 } \end{aligned}$	
9-04	(Trip RUN Sel)	Trip Prevention Selection in Run Mode	0000: Enable Trip Prevention in Run Mode 0001: Disable Trip Prevention in Run Mode	0000	
9-05	(Trip Run Level)	Trip Prevention Level In Run Mode (\%)	50-300	$\begin{aligned} & 200 \\ & 150 \text { *9 } \end{aligned}$	
9-06	(Dec Sel Trip RUN)	Trip Prevention Deceleration Time Selection in Run Mode	0000: Trip Prevention Deceleration Time Set by 3-03 0001: Trip Prevention Deceleration Time Set by 9-07	0000	
9-07	(Dec Time Trip RUN)	Deceleration Time In Trip Prevention Mode (Seconds)	0.1-3600.0	3.0	
9-08	(Motor OL1 Sel)	Electronic Motor Overload Protection Operation Mode	0000: Enable Electronic Motor Overload Protection 0001: Disable Electronic Motor Overload Protection	0000	
9-09	(Motor type)	Motor type Selection	0000: Electronic Motor Overload Protection Set for Non-Inverter Duty Motor 0001: Electronic Motor Overload Protection Set for Inverter Duty Motor	0000	
9-10	(Motor OL1 Curve)	Motor Overload Protection Curve Selection	0000: Constant Torque (OL=103\%) (150\% for Minute) 0001: Variable Torque (OL=113\%)	0000	
9-11	(Motor OL1 Operat)	Operation After Overload Protection is Activated	0000: Coast-to-Stop After Overload Protection is Activated 0001: Drive Will Not Trip when Overload Protection is Activated (OL1)	0000	
9-12	(Torq Det Sel)	Over torque Detection Selection	0000: Disable Over torque Operation 0001: Enable Over torque Operation Only if at Set Frequency 0002: Enable Over torque Operation while the Drive is in Run Mode	0000	

9- Drive and Load Protection Modes					
Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
$9-13$	(Torq Det Operat)	Operation After Over torque Detection is Activated	0000: Drive will Continue to Operate After Over torque is Activated 0001: Coast-to-Stop After Over torque is Activated	0000	
$9-14$	(Torq Det Level)	Over torque Threshold Level (\%)	$30-200$	160	
$9-15$	(Torq Det Delay)	Over torque Activation Delay Time (s)	$0.0-25.0$	0.1	

10- Volts/Hz Operation Mode

Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
10-0	(V/F Selection)	Volts/Hz Patterns	0-18	0/9	*4*6
10-1	(Torque Boost)	Volts/Hz Curve Modification (Torque Boost) (\%)	0-30.0	0.0	*1*6
10-2	(Motor noLoad Amp)	Motor No Load Current (Amps AC)	-----		*5*6
10-3	(Motor rated slip)	Motor Slip Compensation (\%)	0.0-100.0	0.0	*1*6
10-4	(Max frequency)	Maximum Frequency (Hz)	0.20-650.00	50.00/60.00	*4*6
10-5	(Max Voltage)	Maximum Frequency Voltage Ratio (\%)	0.0-100.0	100.0	*6
10-6	(Mid frequency)	Mid Frequency (Hz)	0.10-650.00	25.00/30.00*7	*4*6
10-7	(Mid Voltage)	Mid Frequency Voltage Ratio (\%)	0.0-100.0	50.0 * 7	*6
10-8	(Min frequency)	Minimum Frequency (Hz)	0.10-650.00	0.50/ 0.60	*6
10-9	(Min Voltage)	Minimum Frequency Voltage Ratio (\%)	0.0-100.0	1.0 * 7	*6

11- PID Operation Mode					
Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
11-0	(PID Mode Sel)	PID operation selection	0000: Disabled 0001: Bias D Control 0002: Feedback D Control 0003: Bias D Reversed Characteristics Control 0004: Feedback D Reversed Characteristics Control 0005: Frequency Command + Bias D Control 0006: Frequency Command + Feedback D Control 0007: Frequency Command + Bias D Reversed Characteristics Control 0008: Frequency Command + Feedback D Reversed Characteristics Control	0000	
11-1	(Feedback Gain)	Feedback Gain	0.00-10.00	1.00	*1
11-2	(PID Gain)	Proportional Gain	0.0-10.0	1.0	*1
11-3	(PID I Time)	Integration Time (Seconds)	0.0-100.0	10.0	*1

11- PID Operation Mode					
Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
11-4	(PID D Time)	Differentiation Time (s)	0.0-10.0	0.00	*1
11-5	(PID Offset)	PID Offset	0000: Positive 0001: Negative	0000	*1
11-6	(PID Offset Adj)	PID Offset Adjust (\%)	0-109	0	*1
11-7	(Output Filter T)	Output Lag Filter Time (s)	0.0-2.5	0.0	*1

12- PID "Limits" and "Out of Range" Mode

Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
12-0	(Fb Los Det Sel)	Feedback Loss Detection Mode	0000: Disabled 0001: Enabled - Drive Continues to Operate After Feedback Loss 0002: Enabled - Drive "STOPS" After Feedback Loss	0000	
12-1	(Fb Los Det Level)	Feedback Loss Detection Level (\%)	0-100	0	
12-2	(Fb Los Det Time)	Feedback Loss Detection Delay Time (s)	0.0-25.5	1.0	
12-3	(PID I Limit)	Integration Limit Value (\%)	0-109	100	*1
12-4	(I Time value Sel)	Integration Value Resets to Zero when Feedback Signal Equals the Intended Value	0000: Disabled 0001: 1 Second 0030: 30 Seconds	0000	
12-5	(I Error Margin)	Allowable Integration Error Margin (Units value) (1 Unit $=1 / 8192$)	0-100	0	
12-6	(AIN AI2 Source)	AIN or AI2 Source signal type	$\begin{aligned} & \text { 0000: } \mathrm{AlN}=0 \sim 10 \mathrm{~V} \text { o } 0 \sim 20 \mathrm{~mA} \\ & \text { AI2 }=0 \sim 10 \mathrm{~V} \text { o } 0 \sim 20 \mathrm{~mA} \\ & \text { 0001: } \mathrm{A} N=0 \sim 10 \mathrm{~V} \text { o } 0 \sim 20 \mathrm{~mA} \\ & \text { AI2 }=2 \sim 10 \mathrm{~V} \text { o } 4 \sim 20 \mathrm{~mA} \\ & \text { 0002: } \mathrm{A} N=2 \sim 10 \mathrm{~V} \text { o } 4 \sim 20 \mathrm{~mA} \\ & \text { AI2 }=0 \sim 10 \mathrm{~V} \text { o } 0 \sim 20 \mathrm{~mA} \\ & \text { 0003: } \mathrm{A} N=2 \sim 10 \mathrm{~V} \text { o } 4 \sim 20 \mathrm{~mA} \\ & \text { AI2 }=2 \sim 10 \mathrm{~V} \text { o } 4 \sim 20 \mathrm{~mA} \end{aligned}$	0000	*7
12-7	(Sleep Level)	Sleep Function Operation Level	0.00-650.00	0.0	
12-8	(Sleep Delay Time)	Sleep Function Delay Time	0.0-25.5	0.0	

13- Communication Mode

Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
$13-0$	(Serial Comm Adr)	Assigned Communication Station Number	$1-254$	00001	$* 2^{* 3}$
$13-1$	(Serial Baud Rate)	Baud Rate Setting (bps)	$0000: 4800$ $0001: 9600$ $0002: 19200$ $0003: 38400$	0003	$* 2^{* 3}$
$13-2$	(Comm Stop Bit)	Stop Bit Selection	$0000: 1$ Stop Bit $0001: 2$ Stop Bits	0000	$* 2^{* 3}$

13- Communication Mode

Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
13-3	(Comm Parity Sel)	Parity Selection	0000: Without Parity 0001: With Even Parity 0002: With Odd Parity	00000	*2*3
13-4	(Comm Data Format)	Data Format Selection	0000: 8-Bits Data 0001: 7-Bits Data	0000	*2*3
13-5	(Comm Err Ope Sel)	Communication time-out operation selection	0000: Deceleration to stop. (3-03: Deceleration time 1). 0001: Coast to stop. 0002: Deceleration to stop. (3-07: Deceleration time 2). 0003: Continue operating.	0000	*11
13-6	(Comm Err Det Tim)	Communication time-out detection time	00.0 ~ 25.5 s	0000	*11

14- Motor Auto-Tune Parameters

Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
$14-0$	(Stator Resistor)	Stator Resistance (Ohms)	-----		$* 5$
$14-1$	(Rotor Resistor)	Rotor Resistance (Ohms)	-----		$* 5$
$14-2$	(Equi Inductance)	Equivalent Inductance (mH)	-----	$* 5$	
$14-3$	(Magnet Current)	Magnetizing Current (Amps AC)	----	$* 5$	
$14-4$	(Ferrite Loss)	Ferrite Loss Conductance (gm)	-----		$* 5$

15- Drive Status and Function Reset

Function Code No.	LCD Display	Description	Range/Code	Factory Setting	Remarks
$15-0$	(Drive Model)	Drive Horsepower Code	-----		$* 3$
$15-1$	(Software Version)	Software Version	-----	-----	$* 3$
$15-2$	(Fault Log)	Fault Jog (Last 3 Faults)	-----	----	$* 3$
$15-3$	(Elapsed Hours)	Accumulated Operation Time 1 (Hours)	$0-9999$	-----	$* 3$
$15-4$	(Elapsed Hr*10000)	Accumulated Operation Time 2 (Hours X 10000)	$0-27$	-----	$* 3$
$15-5$	(Elapsed Time Sel)	Accumulated Operation Time Mode	0000: Time Under Power $0001: ~ R u n ~ M o d e ~ T i m e ~ O n l y ~$	0000	$* 3$
$15-6$	(Reset Parameter)	Reset Drive to Factory Settings	$1110:$ Reset for 50Hz Motor Operation $1111: ~ R e s e t ~ f o r ~ 60 H z ~ M o t o r ~$ Operation $1112: ~ R e s e t ~ P L C ~ P r o g r a m ~$	0000	$* 4$

Notes: *1 can be modified during operation
*2 cannot be modified during communication
*3 do not change while making factory setting
*4 as parameter related to factory setting
*5 the parameter will be changed by replacing model (see descriptions of the POSTSCRIPT 1)
*6 only available in V/F mode
*7 only for version 2.3 and above.
*8 only for version 2.4 and above.
*9 for 15 HP of 230 V class and 20HP of 480 V class above
*10 only for version 2.6A and above.
*11 only for version 2.9 and above.

4.4 Parameter Function Description

Parameter Group 0: Drive Operation Mode

0-00 Control Mode
0000: Sensorless (General Mode)
0001: Sensorless (Variable Torque)
0002: Volts/Hz
To select the most suitable sensorless control mode or V/F mode according to the load characteristics.
1.) Sensorless (general mode) is inclined to control the general load or rapidly-changed torque load.
2.) Sensorless (VT mode) is suitable for Blower/ Pump and HVAC load. The magnetic current of motor will be variable with the torque, which will reduce the current to save the energy
3.) In V/F mode please set the parameter group10 comply with the load features.

0-01 Motor Rated Voltage (Vac)

0-02 Motor Rated Current (A)
0-03 Motor Rated Power (kW)
0-04 Motor Rated Speed (RPM/100)
0-05 Motor Rated Frequency (Hz)
0-06 Auto Tuning-Function
0000 Disabled 0001: Enabled
It is necessary to input the data on nameplate and auto tuning as long as changing the motor as sensorless mode is selected.
Auto tuning: firstly input the data to 0-01~0-05 according to the nameplate after power off, then set 0-06=0001 and perform auto tuning; the detected internal data will auto be written to parameter group 14 when display "End".
ex. If the motor rated speed is 1700 rpm , please set 0-04 to 17.0
1.) The motor parameter auto tuning is the stationary auto tuning. During motor auto tuning,
the motor does not rotate, and the keypad display "-AT-".
2.) During motor parameter auto tuning, the input signal in control circuit is invalid.
3.) Before motor parameter auto tuning, please confirm the stop state of the motor.
4.) The motor parameter auto tuning is only available for sensorless control mode ($0-00=0000$ or $0-$
$00=0001$).

0-07 AC Line Input Voltage (Volts AC)
170.0~264.0 (Class 240V)
323.0~528.0 (Class 480V)

To make sure the voltage level of inverter, please input the actual on-site voltage value.

```
0-08 Language Selection
    0000: English
    0001: German
    0002: French
    0003: Italian
    0004: Spanish
```

The function is only available for the products with LCD operation keypad. The operation is not necessary for the one with LED.

Parameter Group 1 - Start/Stop and Frequency Control Modes

1-00 Run command Source Selection

0000: Keypad
0001: External Run/Stop control (see 1-01)
0002: Cpmunication control
0003: Built-in PLC
1.) $1-00=0000$ the inverter is controlled by the keypad.
2.) $1-00=0001$ the inverter is controlled by the external terminals, and the Stop key for emergency does work. (Refer to 1-03 description).
Note: $1-00=0001$, please refer to parameter group $2-00,2-01,2-02$ and $2-03$ for detail description to make secure of persons and machines.
3.) $1-00=0002$ the inverter is communication controlled.
4.) $1-00=0003$ the inverter is built-in PLC controlled, and 1-06 preset value is invalid.

1-01 Operation modes for external terminals (MFIT)
 0000 : Forward/stop-reverse/stop
 0001 : Run/stop-forward/reverse
 0002 : 3-wire control mode -run/stop

When operation command $1-00=0001$ (external terminal), 1-01 is valid. That both forward and reverse commands are ON will be treated as STOP. Set the external input for the followin functions (ex. use S1 and S2, set 5-00=0000 and 5-01=0001):
1.) $1-01=0000$, Control mode is as below:

Input signal is NPN:

Input signal is PNP:

That both forward and reverse commands are ON will be treated as STOP
2.) $1-01=0001$, Control mode is as below:

Input signal is NPN:

Input signal is PNP:

3.) $1-01=0002$, Control mode is as below: Input signal is NPN:

Input signal is PNP:

Note: As 3 wire control mode is selected, the terminal S1, S2 and S3 is not controlled by 5-00, 5-01 and 5-02.

Note: $1-02=0001$, the reverse command is unavailable.

1-02 Prohibition of Reverse Operation 0000: Enable Reverse Command 0001: Disable Reverse Command

$1-02=0001$, the reverse command is invalid.

```
1-03 Keypad Stop Button
    0000: Stop Button Enable
    0001: Stop Button Disable
```

$1-03$ is valid only when $1-00=0000 / 0002$ and the STOP command is enable when $1-03=0000$. When $1-00=0000$ the STOP command is always available.

1-04 Starting Method Selection
 0000: Start from zero
 0001: Start from speed search

1.) $1-04=0000$: As starting, the inverter accelerates from 0 to target frequency in the set time.
2.) 1-04=0001: As starting, the inverter accelerates to target frequency from the detected speed of motor.

1-05 Stopping Method Selection
 0000:Controlled Deceleration with DC Injection Braking (Rapid Stop) 0001:Free run stop

1.) $1-05=0000$: the inverter will decelerate to 0 Hz in preset deceleration time after receiving the stop command.
2.) 1-05=0001: the inverter will stop output as receiving the stop command. The motor will inertia free run to stop.

```
1-06 Frequency Command Source Selection
    0000:Keypad
    0001:Potentiometer on Keypad
    0002: External Analog Signal Input or Remote Potentiometer
    0003: Up/Down Frequency Control Using MFIT (S1 - S6)
    0004:Communication Setting Frequency
    0005: Impulse frequency (S5) setting frequency (ver2.3)
```

1.) $1-06=0000$ the frequency is setted with keypad (refer to $1-07$ for more detail)"
2.) $1-06=0001$, as one of the parameter in group $5-00 \sim 5-06$ is set 0016 and multifunction terminal is OFF, the frequency is set by the KNOB (VR for principal speed) on keypad. While the multifunction is ON, the frequency is set by analog signal (auxiliary speed) on terminal block (TM2).
3.) $1-06=0002$, as one of the parameter in group $5-00 \sim 5-06$ is set 0016 and the multifunction terminal is OFF, the frequency is set by analog signal (principal speed) on terminal block (TM2), while the multifunction is ON, the frequency is set by the KNOB (VR for auxiliary speed) on keypad.
4.) 1-06=0003, please refer to description of parameter group 5-00~5-06 (multifunction input terminals) for the function Up/Down terminal.
5.) The priority in reading frequency is PLC frequency control $>$ traverse run $>$ Jog $>$ preset speed > ム V on keypad or Up / Down or communication control.
6.) $1-06=0005$, impulse frequency command input source should be setting as S 5 terminal and need to coordinate with 5-10 frequency exchange times ratio. For example, the input value S 5 is $4 \mathrm{kHz}, 5-$ 10 is 1.500 times, and output frequency is $40.00 * 1.5=60.00 \mathrm{~Hz}$. $5-04(\mathrm{~S} 5)$ should be setting as 0019.

1-07 Keypad Operation with Up/Down Keys in Run Mode
0000: ‘Enter’ must be pressed after frequency change with Up/Down Keys on keypad.
0001: Frequency will be changed directly when Up/Down Keys are Pressed

Parameter Group 2 - Manual/Automatic Restart Modes

```
2-00 Momentary Power Loss and Restart
    0000 : Momentary Power Loss and Restart is Disable
    0001 : Momentary Power Loss and Restart is Enable
    0002 : Momentary Power Loss and Restart Enable while CPU is Operating.
2-01 Momentary Power Loss Ride-Thru Time (s): 0.0~2.0
```

As start of the other load of power supply results in lowering the voltage below the under voltage level, the inverter will stop output at once. If the power supply recovers in the 2-01 preset time, it will speed search start tracing from the trip frequency, or the inverter will trip with 'LV-C' displayed.
The allowable power loss time differs with the models. The range is from 1 second to 2 second.
1.) $2-00=0000$: as power lost, the inverter will not start.
2.) $2-00=0001$: if the loss time is less than the value of $2-01$, the inverter will Spin Start in 0.5 second as the power supplied and restart times are infinite.
3.) $2-00=0002$: the power lost for long time, before the inverter lost the control power for the CPU, the inverter will restart according to the 1-00 and 2-04 setting and status of external switch as the power resupplied.
Note: $1-00=0001,2-04=0000,2-00=0001$ or 0002 after power lost for a long time, please OFF the power and power switches in case of injury to person and machine by the resupplied power.

```
2-02 Auto restart Delay Times (s) : 0 ~ 800.0
2-03 Number of Auto restart Attempts (times): 0~10
```

1.) $2-03=0$:the inverter will not auto restart as trip for accident.
2.) $2-03>0,2-02=0$:

The inverter will conduct SPEED SEARCH in 0.5 second after trip for accident. The motor will inertia run to frequency at the trip stop, then according to setting accelerate or decelerate time to target frequency.
3.) $2-03>0,2-02>0$:

The output will be stopped for a period which is determined by the 2-02 after accident trip.
Then, speed search to present target frequency.
4.) As the inverter is set in braking deceleration or DC braking, it will not perform restart after accident.

2-04 Auto Restart Method:
 0000: Start from speed search
 0001: Start from zero

1.)2-04=0000: the inverter will detect motor speed and accelerated the setting frequency as speed search enable.
2.) 2-04=0001: the inverter will accelerated the motor speed from stop (zero speed) to setting frequency.

```
2-05 Direct running after power up:
    0000: Enable Direct Running After Power Up
    0001: Disable Direct Running After Power Up
```


Danger

1.) $2-05=0000$ and the inverter is set external terminal controlled ($1-00=0001$), if the run switch is ON as power is supplied, the inverter will auto start. It is recommend that to cut off the power switch and run switch in case of injury to persons or machine as power is supplied again.
2.) $2-05=0001$ and the inverter is set external terminal controlled ($1-00=0001$), if the run switch is ON as power is supplied, the inverter will not auto start and flash STP1. It is necessary to OFF the run switch and then ON to normally start.

2-06 Delay time for direct running (s): 0~300.00

As power on and 2-05=0000, the inverter will perform auto restart in the setting time for delay.

2-07 Reset mode setting
 0000: Enable Reset Only when Run Command is Off 0001: Enable Reset when Run Command is On or Off

2-07=0000 as the inverter is detected the accident, please cut off the Run switch to perform reset, or restarting does not work.

2-08 Kinetic Energy Back-up Deceleration Times (s): 0.00~25.00

1.) $2-08=0.0 \mathrm{KEB}$ function disable
2.) $2-08 \neq 0.0 \mathrm{KEB}$ function enable

Ex: 230 V system

Deceleration Time set by 2-08

NOTE:

1. When $2-08 \neq 0.0$, the momentary power loss and Restart is disabled, the inverter will do KEB Function.
2. When power off, CPU detect the DC Voltage. KEB function enable when DC Voltage below than 190V (230V system) or 380V (480V system).
3. When KEB function enabled, the inverter decelerate to zero by 2-08, and the inverter stop.
4. If the power on signal enabled during the KEB function, the inverter accelerate to original frequency.

Parameter Group 3-Operating Parameters

3-00 Frequency Upper limit (Hz): 0.01 ~ 650.00
3-01 Frequency Lower limit (Hz): 0.01 ~ 650.00

NOTE:

When $3-01=0 \mathrm{~Hz}$ and frequency command is 0 Hz , the inverter will stop at 0 speed.
When $3-01>0 \mathrm{~Hz}$ and frequency command $\leq 3-01$, the inverter will output 3-01 preset value.

```
3-02 Acceleration Time #1 (s): 0.1 ~ 3600.0
3-03 Deceleration Time #1 (s): 0.1 ~ 3600.0
3-04 S Curve of acceleration/deceleration #1 (s): 0.0 ~ 4.0
3-05 S Curve of acceleration/deceleration #2 (s): 0.0 ~ 4.0
3-06 Acceleration Time (MFIT) #2 (s): 0.1 ~ 3600.0
3-07 Deceleration Time (MFIT) #2 (s): 0.1 ~ 3600.0 reference
3-08 Jog Acceleration Time (MFIT) (s): 0.1 ~ 25.5
3-09 Jog Deceleration Time (MFIT) (s): 0.1 ~ 25.5
```

Formula for calculating acceleration and deceleration time: The denominator is base on the rated frequency of motor.

$$
\text { Acceleration time }=3-02 \text { (or 3-06) } \times \quad \frac{\text { Preset frequency }}{0-05} \quad \text { Deceleration time }=3-03 \text { (or 3-07) } \times \frac{\text { Preset frequency }}{0-05}
$$

1.) When 5-00~5-06 is set 0006 (the second acceleration and deceleration time), the first acceleration/ deceleration/ S curve or the second acceleration/ deceleration/ S curve will be selected by off or on the external input terminal.
2.) When 5-00~5-06 is set 0005 (Jog), Jog run is controlled by external terminals. The acceleration and deceleration action will be at Jog acceleration and deceleration time.
3.) When $5-00 \sim 5-06$ is set as 0005 (Jog) and 0006 (acceleration and deceleration time toggle), to change the acceleration and deceleration time by ON the external terminals, and the list setting:

| | Function | Acc/ Dec time \#1 (3-02/3-03) | Acc/ Dec time \#2 (3-06/3-07) |
| :--- | :---: | :---: | :---: | JOG Acc/Dec time (3-08/3-09)

4.) When S curve time (3-04/3-05) is set as 0.0 , the S curve is useless. Namely, acceleration and deceleration is at line.
5.) When S curve time ($3-04 / 3-05$) is larger than 0.0 , the acceleration and deceleration action is as following diagram.
6.) Regardless of the stall prevention period, actual acceleration and deceleration time $=$ preset acceleration / deceleration time $+S$ curve time. For example: acceleration time $=3-03+3-04$.
7.) During acceleration and deceleration process, there might be residual error in acceleration and deceleration toggling. Please set the S curve time as 0.0 (3-04/3-05), if you need to toggle acceleration and deceleration time in acceleration / deceleration process.

3-10 DC Injection Brake Start Frequency (Hz) : 0.1 ~ 10.0
3-11 DC Injection Brake Level (\%) : 0.0 ~ 10.0
3-12 DC Injection Brake Time (s) : 0.0 ~ 25.5
3-12 / 3-10 is the action time and start frequency of DC braking, as graph below:

The upper setting of 3-11 will be corrected 20.0 after manual V2.3.
3-13 Skip Frequency \#1 (Hz) : 0.00~650.00
3-14 Skip Frequency \#2 (Hz) : 0.00 ~ 650.00
3-15 Skip Frequency \#3 (Hz) : 0.00 ~ 650.00
3-16 Skip Frequency Bandwidth ($\pm \mathrm{Hz}$) : 0.00 ~ 30.00
Example: as $3-13$ is set as $10.0 \mathrm{~Hz} / 3-14$ as $20.0 \mathrm{~Hz} / 3-15$ as $30.0 \mathrm{~Hz} / 3-16$ as 2.0 Hz

3-17 Parameter lock
 0000: All Functions can be changed
 0001: Only 6-00-6-08 can't be changed
 0002: All Functions except 6-00-6-08 can't be changed
 0003:All Function can't be changed

```
3-18 Copy Unit
0000: Disable
0001: Inverter to Copy Unit
0002: Copy Unit to Inverter
0003: Verify
```

1.) $3-18=0000$: Disable.
2.) $3-18=0001$: Copy the inverter parameters to module.
3.) $3-18=0002$: Copy the module parameters to inverter.
4.) $3-18=0003$: Copy the parameters to inverter or module to mutually verify the parameters. Note: The copy function is available for the models with same capacity.

3-19 Fan Control
 0000: Auto (Depend on temp.)
 0001: Operate while in RUN Mode
 0002: Always Run
 0003: Always Stop

1.) 3-19=0000: The fan run as the inverter senses temperature rises. Thusly, extend the service period.
2.) $3-19=0001$: The fan runs while the inverter is running.
3.) $3-19=0002$: The fan is continuously running regardless of the action of the inverter.
4.) $3-19=0003$: The fan is always stopping regardless of the action of the inverter.

Note: Due to the hardware limitation, the function is disable at 15HP above of 220V class and 20HP above of 440V class. The fan is running after the inverter power on.

3-20 Energy Saving Mode
 0000: Disabled
 0001: Controlled by MFIT at Set Frequency
 3-21 Energy saving gain (\%): 0 ~ 100

In terms of FAN, PUMP or other heavy inertia loads which need greater start torsion, while in operation they need not so high torsion. Consequently, to decline the output voltage to saving energy by setting $3-20$ is necessary. Set $3-20=0001$ to enable the function and set $5-00 \sim 5-$ $06=0010$ to control the energy saving with MFIT input.
The output voltage will gradually decline to 'original voltage'x‘3-21' preset value as the terminal' is ON. The output voltage will rise to original voltage as the terminal is OFF.

Note: 1. The declining and rising speeds of voltage for energy saving is same as the ones for SPEED SEARCH.
2. Energy saving mode is only available under V/F mode ($0-00=0002$).

3-22 Carrier Frequency (kHz): 2~16

$\mathbf{3 - 2 2}$	Carrier frequency	$\mathbf{3 - 2 2}$	Carrier frequency	$\mathbf{3 - 2 2}$	Carrier frequency	$3-22$	Carrier frequency
2	2 kHz	6	6 kHz	10	10 kHz	14	14 kHz
3	3 kHz	7	7 kHz	11	11 kHz	15	15 kHz
4	4 kHz	8	8 kHz	12	12 kHz	16	16 kHz
5	5 kHz	9	9 kHz	13	13 kHz		

Note: The external electronic components maybe interfered, more serious, even the motor vibration due to cutting of the high carrier frequency waveform, although the inverter provides low noise environment in running. Thusly, it is necessary to regulate the carrier frequency.

3-23 Center Frequency (CF) of Traverse Run (\%): 5.0~100
3-24 Amplitude (A) of traverse Run (\%): 0.1~20.0
3-25 Drop (D) of traverse Run (\%): 0.0~50.0
3-26 Acceleration Time (AT) of traverse Run (s): 0.5~60.0
3-27 Deceleration Time (DT) of traverse Run (s): 0.5~60.0
3-28 Rise (X) deviated traverse (\%): 0.0~20.0
3-29 Lower (Y) deviated traverse (\%): 0.0~20.0
Traverse Run is defined as adding a triangle wave to the basic operation frequency of inverter output frequency at the preset acceleration and deceleration time. The action is as the graph below:

1.) The traverse run is available as the run command and the terminal (5-00~5-05=0025) for such operation both ON. Inverter operating, the traverse run is ready when the inverter output frequency reaches center frequency (3-23). During acceleration to center frequency, the acceleration time is at the originally preset value (3-02/3-06). When the traverse run is OFF or the inverter is OFF, the deceleration time is also at original preset value (3-03/3-07). However, in traverse running, the inverter is at traverse run acceleration time (3-26) and deceleration time (3-27). The action is as follow diagram:

2.) During traverse run, the center frequency could be controlled by the multifunction input terminals. However, the X up deviation and Y low D deviation can not be input at the same time. If they are input at the same time, the inverter will maintain the original center frequency. The motion is as the graph below:

3.)The stall prevention is idle in the acceleration and deceleration time of traverse run. Whereas, it is valid during first acceleration to center frequency process when the Function of traverse run is OFF or the inverter is in deceleration time after the STOP command is received. Thusly, it is must take into consideration to comply the actual system capacity with the proper inverter capacity when designing equipment.
4.)The frequency range of traverse run is restricted by the inverter upper and lower frequency limit. That is: if the (center frequency + Amplitude) is larger than Upper Limit, it will operate at upper frequency limit. And if (center frequency - Amplitude) is less than Lower Limit, vice versa.
5.) During traverse run, all the preset values can't be modified such as (center frequency, amplitude, amplitude drop, acceleration time. deceleration time, traverse run upper deviation and lower deviation). The modified acceleration and deceleration time is priority to the original one, but not traverse run acceleration and deceleration time. The motion is as graph below:
6.) Center frequency $=3-23^{*}$ max. frequency (3-00)

Amplitude $=3-24^{*}$ center frequency
Acceleration/Deceleration time = amplitude acceleration / deceleration time
Amplitude Drop $=3-25^{*}$ amplitude
Deviated traverse (X upper deviation) $=3-28^{*}$ traverse run center
Deviated traverse (Y lower deviation) $=3-29^{*}$ traverse run center
If change the max. frequency of $3-00$, reset $3-23 \sim 3-29$ value is necessary.

3-30 Start Frequency (Hz) : Start Frequency (Hz): 0.0~10.0

4-00 Motor Current Display Selection 0000: Disable Motor Current Display 0001:Enable Motor Current Display

4-01 Motor Voltage Display Selection 0000: Disable Motor Voltage Display 0001:Enable Motor Voltage Display

4-02 DC Bus Voltage Display Selection 0000: Disable Bus Voltage Display 0001:Enable Bus Voltage Display

4-03 PLC Status Display Selection

0000:Disable PLC Status Display 0001:Enable PLC Status Display

4-04 Reference speed motor value (RPM)

The display speed value is calculated as follows: 4-04
Display speed value $=$ frequency command x
Ex. if the rated frequency $(0-05)$ is 60 Hz , the frequency command is 30 Hz and $4-04=1800$, then the display value is 900 .

```
4-05 Custom Units (Line Speed) Display Mode
    0000:Drive Output Frequency is Displayed
    0001:Motor Speed is Displayed in Integer (xxxx)
    0002:Motor Speed is Displayed with One Decimal Place (xxx.x)
    0003:Motor Speed is Displayed with Two Decimal Places (xx.xx)
    0004:Line Speed is Displayed with Three Decimal Places (x.xxx)
```

The preset frequency is displayed as the inverter stops while the operation line speed is displayed as the inverter is running.

4-06 PID Feedback Display Selection
 0000: Disabled
 0001:Enable

Set the following parameters to display the feedback PID value:

$5-05=0020$	Set S6 input (MFIT) as the PID feedback analog terminal (tefer to PID)
$11-0=0001$	PID is enabled
$4-06=0001$	Display S6 as PID analog feedback value 0~100

Set the following parameters to display the feedback PID value:

Signal type	Keypad display value
$0 \sim 10 \mathrm{~V}(12-6=0000)$	$\mathrm{S} 6 \times 100 / 10 \mathrm{~V}$
$4 \sim 20 \mathrm{~mA}(12-6=0001)$	$\mathrm{S} 6 \times 100 / 20 \mathrm{mV}$

Note 1: Please press DSP Key to switch between the output frequency and PID feedback value.
Note 2: The inverter displays XXXF as Running, while XXXR as Stop.

Parameter Group 5-Multifunction Input Terminals

```
5-00~5-06 Multifunction input terminals:
    0000:Forward/Stop Command *1
    0001:Reverse/Stop Command *2
    0002:Preset Speed # 1 (6-02)
    0003:Preset Speed # 2 (6-03)
    0004:Preset Speed # 3 (6-05) *3
    0005:Jog
    0006:Acc/Dec time # 2
    0007:Emergency Stop Contact A
    0008:Base Block
    0009:Speed Search Stop
    0010:Energy Saving
    0011:Control Signal Selection
    0012:Communication Control Signal Selection
    0013:Acc/Dec Disabled
    0014:Up Command
    0015:Down Command
    0016:Principal/Auxiliary Speed
    0017:PID Function Disabled
    0018:Reset
    0019:Encoder Input Terminal (Terminal S5)
    0020:PID Feedback Signal A12 (Terminal Al2)
    0021:Al2 Bias Signal }1\mathrm{ Input (Terminal Al2)
    0022:Al2 Bias Signal }2\mathrm{ Input (Terminal Al2)
    0023:Analog Input (Terminal AIN)
    0024:PLC Application
    0025:Traverse Run
    0026:Traverse Run Upper Deviation
    0027:Traverse Run Lower Deviation
    0028:Power Source Detect for KEB Function
    0029:Emergency Stop Contact B
```

The terminals S1-AIN on terminal block (TM2) are multifunction input terminals. The above 30 functions can be set in these terminals.
Function Description for 5-00~06:
A. 5-00~50-6=0000/0001 (Forward/Reverse/Stop).

As forward command is ON, the inverter runs while stops as OFF. The 5-00 factory set is forward. As reverse command is ON, the inverter runs while stops as OFF. The 5-01 factory set is reverse.
B. 5-00~5-06=0002-0004 (Preset speed \#1~\#3).

External multifunction input terminals are ON, the inverter is operation at the preset time, and the duration is determined by the time of the terminal ON. The corresponding frequency parameter is illustrated below:
C. 5-00~5-06=0005 (Jog) To select Jog operation as ON the external input terminals. Now, the inverter operates at the Jog acceleration and deceleration time. The corresponding frequency parameter is illustrated below:
The priority order of frequency: Jog Speed \rightarrow Preset Speed \rightarrow Keypad frequency or external frequency signal

MFIT input with	MFIT input with	MFIT input with	MFIT input with	Output frequency
$\mathbf{5 - 0 0 \sim 5 - 0 6 = 0 0 0 4}$	$\mathbf{5 - 0 0 \sim 5 - 0 6 = 0 0 0 3}$	$\mathbf{5 - 0 0 \sim 5 - 0 6 = 0 0 0 2}$	$\mathbf{5 - 0 0 \sim 5 - 0 6 = 0 0 0 5}$	preset value
OFF	OFF	OFF	OFF	$6-00$
ON/OFF	ON/OFF	ON/OFF	ON	$6-01$
OFF	OFF	ON	ON	$6-02$
OFF	ON	OFF	OFF	$6-03$
OFF	ON	ON	OFF	$6-04$
ON	OFF	OFF	OFF	$6-05$
ON	OFF	ON	OFF	$6-06$
ON	ON	OFF	OFF	$6-07$
ON	ON	OFF	$6-08$	

D. 5-00~5-06=0006 (acc / dec time \#2)

On the external input terminal, to select the acceleration \#1/deceleration \#1/S curve \#1 or acceleration \#2/deceleration \#2/S curve \#2.
E. 5-00~5-06=0007/0029: External Emergency Stop Contact A or B.

The inverter will decelerate to stop by 3-07 setting and Flash E.S as the emergency stop signal received regardless of 1-05 setting. After such signal released, OFF the operation switch then ON or Press Operation Key, the inverter will restart from the start frequency. If the emergency signal was released before the inverter stop completely, the inverter still carries out emergency stop. The 8-02/8-03 determines the action of the error terminal. As 8-02/8-03=0000: the error terminal does not act when the external emergency signal input. While 8-02/8-03=0009, the error terminal does act when emergency signal input.
Please wiring the terminal before to set 5-00~5-06=0029.
F. 5-00~5-06=0008: Base Block

The inverter stop output as receiving STOP command, and the motor Free-Run stops.
G. 5-00~5-06=0009: Speed Search Stop

When starting, the inverter detects the present speed of the motor firstly, then, the inverter accelerates from the present speed to preset speed.
H. 5-00~5-06=0010: Energy-saving operation

In terms of FAN, PUMP or other heavy inertia loads which need greater start torque, while in operation they need not so high torsion. Thusly, to decline the output voltage is to saving energy. The output voltage gradually declines as the multifunction terminal is ON. It will gradually increase (to the original voltage) as the Multifunction terminal is OFF.
Note: The acceleration and deceleration speed of energy saving operation is the same as the speed of SPEED SEARCH.
I. $5-00 \sim 5-06=0011$: Switch of the control signal

External switch terminal is OFF: 1-00/1-01 determines the operation signal and frequency signal. External switch terminal is ON: Keypad controls the operation signal and frequency signal but not controlled by 1-00/1-01.
J. 5-00~5-06=0012: Switch of the inverter controlling in communication

External switch terminal is OFF: in communication, the master (PC or PLC) can control the inverter operation and frequency signal and allowably modify the parameters, and the operation signals from Keypad and TM2 are idle. Furthermore, the keypad can only display the voltage, current and frequency, the parameters are readable and not writable, and Emergency Stop is valid.
External switch terminal is ON: in communication, the inverter is controlled by the keypad regardless of the setting of 1-00/1-06 and master. Under such circumstance, the master still can read and write the inverter parameters.
K. 5-00~5-06=0013: Disable acceleration and deceleration

The acceleration and deceleration action is unavailable till the forbid acceleration and deceleration signals are released. The action is illustrated in the graph below:

L. 5-00~5-06=0014,0015: UP / DOWN Function
(1)Please set 1-06=0003 if you want to use the UP/DOWN Function, and the other frequency signals are useless.
(2) Set $5-08=0000$ and $5-09=0.0$, the inverter accelerates to the preset value of $6-00$ when the operation terminal is ON. Then, it maintains the certain speed. As the inverter receives the UP/DOWN command, it will accelerate / decelerate till the command is released. The inverter runs at the certain speed. The inverter will ramp stop or Free-Fun stop which is determined by the $1-05$ as long as the inverter receives the STOP command. And the frequency of Stopping will be stored in 6-00. The UP/DOWN KEY is invalid as the inverter stops. It is necessary to use the Keypad to modify the preset parameter.
(3) Set 5-08=0001, the inverter will operate from 0 Hz when the operation terminal is ON . The action of UP/DOWN is as above description. The inverter will ramp stop or free-run stop which determined by1-05 setting when as it receiving the Stop Command and back to 0 Hz . The next operation will start at 0 Hz .
(4)That UP/Down Signal Simultaneously act are invalid
(5) $5-09 \neq 0.0$, the inverter will accelerate to the setting of $6-00$ and maintain at the speed. When the UP/Down terminal is ON, setting frequency is present value 6-00 $\pm 5-09$, and the inverter will accelerate/ decelerate to frequency $6-00 \pm 5.09$. The upper frequency limit and lower frequency limit also restrict the operation. If the signal of UP/DOWN is maintained over 2 seconds, the inverter will begin to accelerate/decelerate. If $5-09=0.0$, the operation is the same, till the UP/DOWN signal stops. Please refer to the time diagram of 5-09.

M. 5-00~5-06=0016 Principal/Auxiliary speed toggle

Multifunction terminal = OFF, the frequency is set by Master Speed, whereas, Multifunction terminal $=$ ON, the frequency is set by Auxiliary Speed.
Ex. 1-06=0001, the master speed is the VR on the keypad and the auxiliary speed is analog signal on the TM2 terminal block.
N. 5-00~5-06=0017 (PID Function Disable)

The PID Function Disable is ON. PID is not controlled by 11-0, while OFF, it is controlled by 11-0.
O. 5-00~5-06=0018 (Reset Command)

The Reset command is same as Reset Key on the panel is ON. The command is OFF, and the inverter does not response. The factory set of $5-05$ is Reset command.
P. 5-04=0019 (Encoder Input terminal)

The multifunction terminal S5 is set 0019 means it is the input terminal for PLC program Encoder.
Q. 5-05 or 5-12=0020 (PID feedback input terminal)

The multifunction terminal $\mathrm{Al} 2=0020$ means the PID feedback input terminal and 0~10V ($0 \sim 20 \mathrm{~mA}$) or $2 \sim 10 \mathrm{~V}(4 \sim 20 \mathrm{~mA})$ is available by the setting of 11-0.
R. 5-05 or $5-12=0021 / 0022$ (Bias signal 1/2 input)

To regulate the Offset of the Keypad VR or AIN analog input, only the signal of 0~10V ($0 \sim 20 \mathrm{~mA}$) or $2 \sim 10 \mathrm{~V}(4 \sim 20 \mathrm{~mA})$ is available.
$5-05$ or $5-12=0021$ Function

$5-05$ or $5-12=0022$ Function

* The value is 0 when $\mathrm{AlN}+(\mathrm{Al} 2-5 \mathrm{~V})<0$

S. 5-06=0023 (Analog input AIN)

The multifunction terminal $\operatorname{AIN}=0023$. The action is provided for setting the frequency.
T. 5-00~5-06=0024 (PLC Application)

The multifunction terminal S1-AIN=0024, which means the terminal is for PLC application.
The terminal is provided for the PLC program input.
U. 5-00~5-06=0025 (Traverse Run).

The motion description refers to 3-23~3-29 for detail description.
V. 5-00~5-06=0028 (Power Source Detect for KEB Function) Please refer to the description of 2-08.

5-07 Multifunction terminal S1~S6 and AIN signal confirm the scan times (ms X 4): 1~100 times

TM2 terminal used as scanning, if there are same signals continuously input for N times (Namely, Scan times), the inverter will treated the signal as normal. During performing the signal, if the scan times are less than N , the signal will be as noise.
Each scan period is 4 ms .
The user can specify the scan times interval duration according to the noise environment. If the noise is serious, upper modify the value of $5-07$, but the response speed will be slow down. Note: If the S6 and AIN is for digital signal, the voltage level for digital signal above 8 V is treated as ON, below 2 V is OFF.

5-08 Stop Mode Using MFIT:
 0000: When Up/Down is used, the preset frequency is hold as the inverter stops, and the UP/Down is idle.
 0001: When Up/Down is used, the preset frequency is reset to 0 Hz as the inverter stops.
 0002: When Up/Down is used, the preset frequency is hold as the inverter stops, and the UP/Down is available.

(1) Set $5-08=0000$, the inverter will accelerate to the speed of $6-00$ as receiving the Run command and run at such certain speed. The inverter begins to accelerate (decelerate) as the UP (Down) terminal is energized. The inverter will hold the speed as the UP/DOWN command released. When the Run Signal releases, the inverter will ramp stop or stop output (determined by the 1-05). It will store the frequency when the operation signal disappeared. UP/DOWN keys are idle when the inverter is stop. The keypad is available for you modify the preset frequency (6-00).
(2) If $5-08=0002$, the UP/Down is available as the inverter stops.
(3) Set $5-08=0001$, as the Run terminal is energized, the inverter operates from 0 Hz , the Function of UP/DOWN is same as the above description. When the Run Signal released, the inverter will ramp stop or stop output (determined by 1-05). And back to 0Hz. The following operation will always begin from OHz .

5-09 Step of Up/Down Function (Hz): 0.00 ~ 5.00

There are two modes covered below:
(1) $5-09=0.00$, the function is disable. The operation is just as the original one. As UP terminal is ON, the frequency increases while the DOWN terminal is ON, the frequency decreases. (Refer to the following graph).

(2) 5-09 $=0.01$ to 5.00 , UP/ DOWN terminal ON, that equivalent to increase/decrease the frequency of 5-09. If the pressing is over 2 seconds, revive the original UP/DOWN mode (Please refer to the following diagram)

5-10 Impulse input frequency time ratio: 0.001~9.999

When frequency source 1-06 be setting as 0005, the impulse signal frequency will be according to this parameter to decide to the real inside frequency of inverter. The inside calculate formula:

Frequency = S5 (impulse frequency) * 5-10 (times ratio)
Es. S5 inpulse is 1 kHz (1000), $5-10=1.50$:
Frequency $=1000$ * $1.5=1500=15.00 \mathrm{~Hz}$
The frequency accuracy of $S 5$ is by base of $100,1 \mathrm{~K}(1000)$ present 10.00 Hz .

5-11 Select auxiliary frequency source (AI2)

0000: Frequency refer to 6-00.
0001: Frequency refer to the VR analog signal on the Keypad.
0002: Frequency refer to the VR analog signal on TM2.
0003: Frequency refer to the frequency value which is calculated by Up/Down on TM2.
0004: Frequency refer to the input communication frequency

When frequency source command setting as impulse command, (1-06=0005) If master speed operating ($5-00 \sim 5-06$ setting to 0016 and the terminal is OFF), frequency running as impulse frequency. If auxiliary speed operating ($5-00 \sim 5-06$ setting to 0016 and the terminal is ON), frequency should be decided by 5-11 setting.

5-12 Al2 function set (For 2.2~7.5kW @ 220V and 2.2~11kW @ 440V only).
 0020: PID Feedback Signal AI2 (Terminal AI2)
 0021: Al2 Bias Signal 1 Input (Terminal Al2)
 0022: Al2 Bias Signal 2 Input (Terminal Al2)

Parameter Group 6- Jog and Preset (MFIT) Speed Setting on Keypad

6-00 Keypad frequency (Hz): 0.00~650.00
6-01 Jog frequency (Hz): 0.00~650.00
6-02 Preset frequency \#1 (Hz): 0.00~650.00
6-03 Preset frequency \#2 (Hz): 0.00~650.00
6-04 Preset frequency \#3 (Hz): 0.00~650.00
6-05 Preset frequency \#4 (Hz): 0.00~650.00
6-06 Preset frequency \#5 (Hz): 0.00~650.00
6-07 Preset frequency \#6 (Hz): 0.00~650.00
6-08 Preset frequency \#7 (Hz): 0.00~650.00
The inverter can operates at 9 preset speed. The operation time of the 9 stages is base on the ON time of the terminal MFIT (set 5-00~5-06=0002~0005), the operation is as follows:.

MFIT input with $5-00 \sim 5-, 06=0004$	MFIT input with $5-00 \sim 5-06=0003$	MFIT input with $5-00 \sim 5-06=0002$	MFIT input with $5-00 \sim 5-06=0005$	Output frequency preset value
OFF	OFF	OFF	OFF	$6-00$
ON/OFF	ON/OFF	ON/OFF	ON	$6-01$
OFF	OFF	ON	OFF	$6-02$
OFF	ON	OFF	OFF	$6-03$
OFF	ON	ON	OFF	$6-04$
ON	OFF	OFF	OFF	$6-05$
ON	OFF	ON	OFF	$6-06$
ON	ON	OFF	OFF	$6-07$
ON	ON	ON	OFF	$6-08$

The Jog external multifunction terminal $=$ ON, the inverter operates in Jog acceleration time/Jog decelerate time.
Priority in reading the frequency: Jog > Preset speed > Keypad frequency or external frequency signal.

Parameter Group 7 - Analog input signal operation mode

7-00 AIN Gain (\%): 0 ~100
7-01 AIN Bias (\%): 0 ~100
7-02 AIN Bias Selection: 0000:Positive 0001:Negative
7-03 AIN Slope: 0000:Positive 0001:Negative
7-04 AIN signal verification Scan Time (AIN, Al2) 1~100
7-05 A12 Gain (\%): 0 ~ 200

The function is valid when $1-06=0002$.
1.) $7-02=0000: 0 \mathrm{~V}(0 \mathrm{~mA})$ corresponding to Lower Frequency Limit, $10 \mathrm{~V}(20 \mathrm{~mA})$ corresponding to Upper Frequency Limit
2.) $7-02=0001: 10 \mathrm{~V}(20 \mathrm{~mA})$ corresponding to Lower Frequency Limit, $0 \mathrm{~V}(0 \mathrm{~mA})$ corresponding to Upper Frequency Limit.
3.) $12-6=0000: 0 \sim 10 \mathrm{~V}(0 \sim 20 \mathrm{~mA})$

if $S W 2=\mathrm{I}$	$\mathrm{F}=\mathrm{I}^{*}(3-00) / 20$ with $\mathrm{I} \geq 0$
if $\mathrm{SW} 2=\mathrm{V}$	$\mathrm{F}=\mathrm{V}^{*}(3-00) / 10$ with $\mathrm{V} \geq 0$

4.) $12-6=0001: 2 \sim 10 \mathrm{~V}(2 \sim 10 \mathrm{~V}$ o $4 \sim 20 \mathrm{~mA})$

if $\mathrm{SW} 2=\mathrm{I}$	$\mathrm{F}=(\mathrm{l}-4)^{*}(3-00) / 16$ with $\mathrm{I} \geq 4$
	$\mathrm{~F}=0$ with $\mathrm{I}<4$
if $\mathrm{SW} 2=\mathrm{V}$	$\mathrm{F}=(\mathrm{V}-2)^{*}(3-00) / 8$ with $\mathrm{V} \geq 2$
	$\mathrm{~F}=0$ with $\mathrm{V}<2$

The setting of figure 1:					
	7-00	7-01	7-02	7-03	7-05
A	100\%	50\%	0	0	100\%
B	100\%	0\%	0	0	100\%
	Bias 100\% 50\%			V	

The setting of figure 2 :					
	7-00	7-01	7-02	7-03	7-05
C	100\%	50\%	0	0	100\%
D	100\%	0\%	0	0	100\%
	Bias 100% 50%			er Fre $0=60)$ $>V$	ncy

The setting of figure 3:					
	7-00	7-01	7-02	7-03	7-05
E	100\%	20\%	1	0	100\%

The setting of figure 4:					
	7-00	7-01	7-02	7-03	7-05
F	100\%	50\%	1	1	100\%
				er Fr =60) V	ncy

The inverter reads the average value of A / D signals once per ($7-04 \times 4 m s$). Users can determine scan intervals according to noise in the environment. Increase 7-04 in noisy environment, but the respond time will increase accordingly.

Parameter Group 8 - Multifunction output terminal and output signal operation mode

```
8-00 Analog Output Voltage Mode:
    0000: Output frequency
    0001:Frequency Setting
    0002:Output voltage
    0003:DC Bus Voltage
    0004:Motor current
    0005:FEEDBACK Signal of PID
8-01 Analog Output Gain (%): 0 ~ 200
```

The multifunction analog output terminal of the terminal block (TM2), is $0 \sim 10 \mathrm{Vdc}$ analog output. The output type is determined by the $8-00$. The function of $8-01$ is: when there is tolerance for the external voltage meter and peripheral equipment, please regulate 8-01. The FEEDBACK value of PID (That is the input voltage and current of Al2) outputs analog value from FM+ terminal. (Decide to parameter 4-06). The value is corresponding to the input signal 0~10V ($0 \sim 20 \mathrm{~mA}$) or 2~10V (4~20mA).
Note: The max output voltage is 10 V due to the circuit, even the output voltage should be higher than 10 V .

8-02 Output Relay R1 operation Mode (R1C, R1A, R1B terminal on TM2)
8-03 Output Relay R2 operation Mode (R2C, R2A terminal on TM2)
0000: Run
0001: Frequency Reached (Target Frequency) (Set Frequency $\pm 8-05$)
0002:Set Frequency (8-04 $\pm 8-05$)
0003: Frequency Threshold Level (>8-04) - Frequency Reached
0004: Frequency Threshold Level (<8-04) - Frequency Reached
0005: Over torque Threshold Level
0006: Fault
0007: Auto-restart
0008: Momentary AC Power Loss
0009: Emergency Stop Mode (When multifunction input set to 0007)
0010: Base Block (When multifunction input set to 0008)
0011: Motor Overload Protection
0012: Drive Overload Protection
0013: PID Feedback Signal Break
0014:PLC Operation
0015: Power On
8-04 Frequency Reached Output (refer to 8-02=0001) (Hz) $=0 \sim 650$
8-05 Frequency Reached Bandwind ($\pm \mathrm{Hz}$): 0~30
$8-02 / 8-03=0001$: The preset frequency is reached $(\pm 8-05)$

8-02/8-03 = 0002: Arbitrary frequency consistency Fout $=8-04 \pm 8-05$
Operation Frequency Reached Arbitrary Frequency (8-04 $\pm 8-05$)
Operation conditions:
A. | Input Frequency-Frequency Command (1-06) | < Frequency Threshold Level (8-05)
B. | Input Frequency-Detecting Level (8-04) | < Frequency Threshold Level (8-05)

8-02/8-03 = 0003: Frequency detection Fout $>8-04$

8-02/8-03 = 0004: Frequency detection Fout $<8-04$

8-02/8-03= 0005: Over torque detection

Parameter Group 9 - Drive and Load Protection Modes

9-00 Trip Prevention Selection During Acceleration:
0000: Enable Trip Prevention During Acceleration
0001:Disable Trip Prevention During Acceleration
9-01 Trip Prevention Level During Acceleration (\%): 50~300
9-02 Trip Prevention Selection During Deceleration:
0000: Enable Trip Prevention During Deceleration
0001: Disable Trip Prevention During Deceleration
9-03 Trip Prevention Level During Deceleration (\%): 50~300
9-04 Trip Prevention Selection in Run Mode:
0000: Enable Trip Prevention in Run Mode
0001: Disable Trip Prevention in Run Mode
9-05 Trip Prevention Level in Run Mode (\%): 50~300
9-06 Trip Prevention Deceleration Time Selection in Run Mode:
0000: Trip Prevention Deceleration Time Set by 3~03
0001: Trip Prevention Deceleration Time Set by 9~07
9-07 Deceleration Time in Trip Prevention Mode (s): 0.1~3600.0

1. In acceleration, the inverter will delay the acceleration time if the time is too short resulting in the over current in order to prevent the inverter trips.
2. In deceleration, the inverter will delay the decceleration time if the time is too short resulting in the over voltage of DC VUS in order to prevent the inverter trips with 'OV' displayed.
3. Some mechanical characteristics (such as press) or unusual breakdown (seize due to insufficient lubrication, uneven operation, impurities of processed materials, etc.) will cause the inverter to trip, thus inconvenience users. When the operating torque of the inverter exceeds the setting of 9-05, the inverter will lower the output frequency following the deceleration time set by $9-06$, and return to the normal operation frequency after the torque get steady.
4. When the inverter needs to stop immediately and the braking resistor is connected, set 9-02 to 1 to get bigger braking capacity.
```
9-08 Electronic Motor Overload Protection Operation Mode:
    0000: Enable Electronic Motor Overload Protection
    0001:Disable Electronic Motor Overload Protection
9-09 Motor Type Selection:
    0000: Electronic Motor Overload Protection Set for Non-Inverter Duty Motor
    0001:Electronic Motor Overload Protection Set for Inverter Duty Motor
9-10 Motor Overload Protection Curve Selection:
    0000: Constant Torque (OL=103%) (150%, 1 minute)
    0001:Variable Torque (OL=113%) (123%, 1 minute)
9-11 Operation After Overload Protection is Activated
    0000: Coast-to stop after overload protection is activated
    0001: Drive Will not Trip when Overload Protection is Activated (OL1)
```

Description of the thermal relay function:
$1.9-10=0000$: protect the general mechanical load, the load is less than 103% rated current, the motor continue to run. The load is larger than 150% rated current, the motor will run for 1 minute. (Refer to following curve1).
= 0001: protect HVAC load (FAN, PUMP...so on): the load is less than 113\% rated current, the motor continue to run. The load is larger than 123\% rated current, the motor will run for 1 minute.
2. The heat sinking function will declining when the motor run at low speed. So the thermal relay action level will decline at the same time. (The curve 1 will change to curve 2).
3. 9-09 $=0000$: set 0-05 as the rated frequency of the serve motor.
4. 9-11 $=0000$: the inverter coast to stop as the thermal relay acts and flash OL1. Press the 'reset' or the external reset terminal to continue to run
= 0001: the inverter continues to run as the thermal relay acts and flash OL1. Till the current decline to 103% or 113% (determined by $9-10$), OL1 will disappear.

Electronic Motor Overload OL1 protection current and frequency

Non-Inverter Duty Motor OL1 Protection Curve OL=103\% Start, 150\%/1 Min.

Inverter Duty Motor OL1 Protection Curve OL=103\% Start, 150\%/1 Min.

Non-Inverter Duty Motor OL1 Protection Curve OL=113\% Start, 123\%/1 Min.

Inverter Duty Motor OL1 Protection Curve OL=113\% Start, 123\%/1 Min

9-12 Over Torque Detection Selection:
 0000: Disable Over Torque Operation
 0001: Enable Over Torque Operation Only if at Set Frequency
 0002: Enable Over Torque Operation while the Drive is in Run Mode
 9-13 Operation After Over Torque Detection is Activated:
 0000: Drive will Continue to Operate After Over Torque is Activated
 0001: Coast-to-Stop After Over Torque is Activated
 9-14 Over Torque Threshold Level (\%): 30~200
 9-15 Over Torque Activation Delay Time (s): 0.0~25.0

The over torque is defined as: the output torque is inside parameter 9-15, the voltage level (the inverter rated torque is 100\%) is over 9-14 parameter.

9-13 = 0000: If there is over torque, the inverter can continue to run and flashes OL3 till the output torque is less than the 9-14 setting value.
$=0001$: If there is over torque, the inverter coasts to stop and flashes OL3. it is necessary to press 'RESET' or external terminal to continue to run.
Parameter 8-02, 8-03 (Multifunction output terminal) $=0005$, the output terminal is output over torque signal.
Note: Over torque output signal will be output as the parameter 9-12=0001 or 0002 when the level and time are over the range.

Parameter Group 10 - Volts /Hz Pattern Operation Mode

10-0 V/F PATTERN Selection = 0~18
10-1 Torque boost gain (V/F pattern modulation \%) $=0.0$ ~ 30.0
10-2 Motor no load current (Amps AC) : \qquad
10-3 Motor rated slip compensation (\%) = 0.0 ~ 100.0
10-4 Max output frequency $(\mathrm{Hz})=0.20 \sim 650.0$
10-5 Max output frequency voltage ratio (\%) = 0.0 ~ 100.0
10-6 Medium frequency $(\mathrm{Hz})=0.10 \sim 650.0$
10-7 Medium output frequency voltage ratio (\%) $=0.0 \sim 100.0$
10-8 Min output frequency $(\mathrm{Hz})=0.10 \sim 650.0$
10-9 Min output frequency voltage ratio (\%) = 0.0 ~ 100.0
$10-0=18$, set the V/F pattern freely complying with 10-4~10-9 (Refer to following diagram)

10-0 = $0 \sim 17 \mathrm{~V} / \mathrm{F}$ Pattern (Refer to following list)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline $$
\stackrel{\otimes}{\underset{\beth}{2}}
$$ \& \& 10-0 \& V/F Pattern \& \& $$
\stackrel{\otimes}{\mathrm{D}}
$$ \& 은
¢
L \& 10-0 \& V/F Pattern \&

\hline \multirow{4}{*}{$$
\begin{aligned}
& N \\
&
\end{aligned}
$$} \& \& 0 \& \& \& \multirow{4}{*}{$$
\begin{aligned}
& N \\
& \hline \mathbf{O}
\end{aligned}
$$} \& \& 9 \& \& Hz

\hline \& \& 1
2
3 \& \& \& \& \& 10
11
12 \& \& Hz

\hline \& \& 4

5 \& \& \& \& 0
D
0
0
0
0
0.0
0
0.0
0
0 \& 13
14 \& \& Hz

\hline \& \& | 6 |
| :--- |
| 7 |
| 8 | \& \& \& \& \& 15

16
17 \& \&

\hline
\end{tabular}

$\mathbf{1 0 - 0}$	B	C
$0 / 9$	7.5%	4.5%
$1 / 10$	10.0%	7.0%
$2 / 11$	11.0%	$8.5 \% / 8.0 \%$
$3 / 12$	12.0%	$9.5 \% / 9.0 \%$
4	17.5%	4.0%
5	25.0%	5.0%
13	20.5%	7.0%
14	28.5%	8.0%
$6 / 15$	45.0%	1.0%
$7 / 16$	55.0%	1.0%
$8 / 17$	65.0%	1.0%

The inverter will output the value that B, C voltage (refer to $10-0$) plus $10-1 \mathrm{~V} / \mathrm{F}$ pattern setting.
And the start torque will be raised.

Note: 10-1=0.0, Torque boost function is invalid
When the induction motor is in running, there must be slip due to the load. It is necessary to boost to improve the precision of the speed.

Slip frequency boost $=\frac{\text { Output Current }}{(0-02)-(10-2)} \times(10-3)$
Motor synchronization speed $(R P M)=\frac{\text { Motor rated frequency }(50-60 \mathrm{~Hz})}{\text { Motor Poles }} \times 120$
eg: 4 Poles, 60 Hz Motor synchronization speed (RPM) $=\frac{60}{4} \quad \times 120=1800$
Note:0-02=motor rated current
10-2=motor no load current

10-3 rough value $=\frac{(\text { Motor synchronization speed-Rated speed })}{\text { Motor synchronization speed }}$

Motor no load current (10-2) differs with the inverter capacities (15-0) (Refer to 0-02 note), it should be regulated according to the actual condition.

Parameter group 11 - PID operation mode

```
11-0 PID Operation Selection
    0000:PID disable
    0001:PID enable (Deviation is D-controlled)
    0002:PID Feedback D-controlled
    0003: PID D Reverse characteristic controlled
    0004:PID Feedback D characteristic controlled
    0005: PID, Frequency Command + D controlled
    0006:PID, Frequency Command + Feedback D controlled
    0007:PID, Frequency Command + D reverse Characteristic controlled.
    0008: PID, Frequency Command + Feedback D reverse Characteristic controlled.
```

$11-0=0001, D$ is the deviation of (target value - detected value) in the unit time (11-4).
$=0002$, D is the deviation of the detected values in unit time (11-4).
$=0003, D$ is the deviation of (target value - detected value) in the unit time (11-4). If the
deviation is positive, the output frequency decreases, vice versa.
$=0004$, D is the deviation of detected value in unit time (11-4). When the deviation is
positive, the frequency decreases, vice versa.
$=0005, \mathrm{D}$ is equal to the deviation of (target value - detected value) in unit time (11-4)
+Frequency command.
$=0006$, D is equal to the deviation of detected values in unit time + Frequency
command.
$=0007$, D is equal to the deviation of (target value - detected value) in unit time +
Frequency command. If the deviation is positive, the output frequency decreases, vice
versa.
$=0008$, D is equal to the deviation of detected values in unit time + Frequency
command. When the deviation is positive, the frequency decreases, vice versa.
11-1 Feedback Calibration Gain: 0.00 ~ 10.00
$11-1$ is the calibration gain. Deviation = (target value - detected value) $\times 11-1$
11-2 Proportion Gain: 0.00 ~ 10.00
11-2 Proportion gain for P control.
11-3 Integrate Time(s): 0.0 ~ 100.0
11-3 Integrate time for I control
11-4 Differential Time(s): 0.00 ~ 10.00
11-4 Differential time for D control

```
11-5 PID Offset :
    0000:Positive Direction
    0001:Negative Direction
11-6 PID Offset Adjust (%) : 0~109
```

11-5/11-6: PID the calculated result pluses 11-6 (the sign of 11-6 is determined by 11-5).

11-7 Output Lag Filter Time (s): 0.0 ~ 2.5

11-7: update time for output frequency.
Note: PID Function is available for controlling the output flow, external fan flow and temperature. The controlling flow is as follow:

Performing PID control, set $5-05$ or $5-12=0020$, AI2 (S6) on TM2 as PID feedback signal.
The target value of above diagram is the 1-06 input frequency.
There are two ways to see the PID feedback signal, one is using the Keypad switch display ($4-06$ must be setting as 0001), the other is using analog output FM+ ($8-00$ must be setting as 005).

Parameter Group 12 - PID "Limits" and "Out of Range" Mode

12-0 Feedback Loss Detection Mode: 0000:Disable
 0001: Enable - Drive Continues to Operate After Feedback Loss 0002: Enable - Drive "STOPS" After Feedback Loss

$12-0=0000$: Disable; $12-0=0001$: detect to run and display PDER; $12-0=0002$: detect to stop and display PDER.

12-1: Feedback Loss Detection level (\%): 0 ~ 100

$12-1$ is the level for signal loss. Deviation = Command value - Feedback value. While the deviation is larger than the loss level, the feedback signal is lost.

12-2: Feedback Loss Detection Delay Time (s): 0.0 ~ 25.5
12-2: the action lay time as the feedback signal lost.

12-3: Integrate Limit Value (\%): 0 ~ 109

12-3: the Limiter to prevent PID saturating
12-4 Integrator value Reset to 0 when Feedback Signal Equals the Intended Value 0000: Disable 0001:1 second 0030:30 seconds

12-4=0000: As PID feedback value reaches the command value, the integrator will not be reset to 0 .
12-4=0001~0030: As PID feedback value reaches the target value, reset to 0 in 1~30 seconds and inverter stops output. The inverter will output again as the feedback value differs from the target value.

12-5: Allowable Integration Error Margin (Unit Value) (1 Unit = 1/8192): 0 ~ 100

$12-5=0 \sim 100 \%$ unit value: restart the tolerance after the integrator reset to 0 .

12-6: 12-6: AIN and AI2 Signal Type

12-6=0000: AIN=0~10V or 0~20mA, Al2=0~10V or 0~20mA
12-6=0001: AIN=0~10V or $0 \sim 20 \mathrm{~mA}, \mathrm{Al} 2=2 \sim 10 \mathrm{~V}$ or $4 \sim 20 \mathrm{~mA}$
12-6=0002: AIN=2~10V or 4~20mA, AI2=0~10V or 0~20mA
12-6=0003: AIN=2~10V or 4~20mA, Al2=2~10V or 4~20mA
Signal V or I is decided by SW2 \& SW3

12-7 Sleep function operation level (Hz): 0.0~650.0
12-8 Sleep function delay time (s): 0.0~25.5

To enable the PID function set 11-0=0001. To configure the PID feedback signal set $5-05$ or $5-12$ as 0020 (1-06 parameter define the frequency command). When the PID output goes below the 12-7 level for 12-8 time the drive passes in sleep mode (the drive decelerates to zero); when the PID output return above 12-7 level the PID function is reactivated. The time diagram is as follow:

Extern run command

-----. INV out frequency

- - PID out frequency

LSleep level (set from 12-7 unit is HZ)

12-7: sleep level sleep delay

3-00: Upper Limit
3-01: Low Limit

Parameter Group 13 - Communication mode

13-0 Assigned Communication Station Number: 1 ~ 254
13-0: to set the communication station codes which are suitable for driving more than one inverters situations.

13-1 Baud Rate setting (bps):
0000:4800
0001:9600
0002: 19200
0003:38400
13-2 Stop Bit Selection:
0000: 1 stop bit
0001:2 stop bit
13-3 Parity Selection :
0000: no parity
0001: even parity
0002: odd parity
13-4: Data Format Selection:
0000:8 bit data
0001:7 bit data

RS-485 Communication:
(1) One inverter is controlled by a PC or PLC or controller. (set 13-0 = 1~254)
(2) More than one inverters are controlled by a PC or PLC or Controller (The maximum of inverter could be controlled is 32), when the inverter receives the communication station code $=000$, the communication controlling is acceptable regardless the setting value of 13-0.
RS-232communication: (RS232 interface is required)
1vs1 controlling: to control one inverter by a PC or PLC or controller. (Set 13-0 = 1~254) Note:
a. The BAUD RATE (13-1) of PC (or PLC or Controller) and the one of the inverter should be set as the same .Communication format (13-2/13-3/13-4) should be set as the same.
b. The inverter will confirm the parameter efficient as PC modifies the parameter of the inverter.
c. Please refer to the RVCF Communication PROTOCOL

```
13-5 Communication time-out operation selection
0000: Deceleration to stop (3-03: Deceleration time 1).
0001: Free run to stop.
0002: Deceleration to stop (3-07: Deceleration time 2). 0003: Continue operating.
```

Reset method:
a. Push the "Reset" button directly.
b. Receive correct Modbus data from Master.

After communication time-out, the motor decelerates to stop ($13-5=0000,0001,0002$).
And the motor does not run automatic after reset, the inverter must set the run command again to restart.
*Cannot be modified during communication.
*Detail list please see Appendix

13-6 Communication time-out detection time (s): 0.00 ~ 25.5
Communication time-out detection enable or not is according to 13-6, not relationship with Run/Frequency command.
*Cannot be modified during communication.
*Detail list please Appendix

Parameter Group 14 - Auto Tuning

14-0 Stator Resistance (Ohms)
14-1 Rotor Resistance (Ohms)
14-2 Equivalent Inductance (mH)
14-3 Magnetized Current (Amps AC)
14-4 Ferrite Loss Conduction (gm)
If $0-00=0000$ or 0001 (sensorless mode) is selected, as power ON, set $0-06=0001$, the motor will run as the inverter performs auto tuning. As the motor stop, it means that auto tuning finished.The inverter will write the internal parameter of the motor to 14-0~14-4, and auto reset the 0-06 as 0000.
Auto tuning must be carried out as long as the motor changed. If the internal parameters is known already, they can be input to 14-0~14-4 directly.
$0-06=0001$, to perform auto tuning, after finished, 0-06 auto reset to 0000, the Keypad displays END.The parameter group only affect in sensorless mode.

Parameter Group 15-Operation Status and Function Reset

15-0: Drive Horsepower Code

15-0	Inverter Model	
2P5	$\begin{aligned} & \text { U } \\ & \text { ® } \end{aligned}$	RVCFA1200040 RVCFA3200040
201		RVCFA1200075 RVCFA3200075
202		RVCFB1200150 RVCFA3200150
203		RVCFB1200220 RVCFB3200220
205		RVCFB3200370
208		RVCFC3200550
210		RVCFC3200750
215		RVCFD3201100
220		RVCFD3201500
225		RVCFD3201850
230		RVCFE3202200
240		RVCFE3203000

15-0	Inverter Model	
401	$\begin{aligned} & \text { U } \\ & \underset{\pi}{\gtrless} \end{aligned}$	RVCFA3400075
402		RVCFA3400150
403		RVCFB3400220
405		RVCFB3400370
408		RVCFC3400550
410		RVCFC3400750
415		RVCFC3401100
420		RVCFD3401500
425		RVCFD3401850
430		RVCFD3402200
440		RVCFE3403000
450		RVCFE3403700
460		RVCFF3404500
475		RVCFF3405500

15-1 Software Version

15-2 Fault Jog (Latest 3 faults)

1. When the inverter doesn't work normally, the former fault log stored in 2.xxxx will be transferred to 3.xxxx, then, the one in 1.xxxx to 2.xxxx. The present fault will be stored in the blank 1.xxxx. Thusly, the fault stored in 3.xxxx is the earliest one of the three, while the one 1.xxxx is the latest.
2. In 15-2, the fault 1.xxxx will be displayed at first, press, you can read 2.xxx 3.xxx 1.xxx, whereas, the order is 3.xxx 2.xxx 1.xxx 3.xxx.
3. In 15-2, the three fault log will be cleared as the reset key is pressed. The log content will changed to 1.---, 2.---, 3.---.
4. E.g. if the fault log content is '1.OCC' which indicates the latest fault is OC-C, and so on.
```
15-3 Accumulated Operation Time 1 (Hours): 0 ~ 9999
15-4 Accumulated Operation Time 2 (Hours X 10000): 0 ~ 27
15-5 Accumulated Operation Time Mode:
    0000:Power on time
    0001:Operation time
```

When the operation time \#1 is set to 9999, the next hour will be carried to operation time \#2. Meanwhile, the recorded value will be cleared to 0000, and the record value of operation duration \#2 will be 01.
Description of operation time selection:

PRESET VALUE	DESCRIPTION
0000	Power on, count the accumulated time.
0001	Inverter operation, count the accumulated operation time

```
15-6 Reset the factory setting:
    1110: Reset the 50Hz factory setting
    1111:Reset the 60Hz factory setting
    1112:Reset PLC program
```

When $15-6$ is set to 1111 , the parameter will be reset to factory setting. The max output voltage will comply with the voltage and frequency (0-01~0-05) on the nameplate of the motor. The output frequency is 60 Hz if the upper frequency limit is not set.

Note: Motor parameters (14-0~14-4) will be modified under V/F control mode when reset factory setting. On the contrary, motor parameters (14-0~14-4) will not be modified under sensorless control mode when reset factory setting.

| 8-00 Multifunction analog output control: |
| :--- | :--- | :--- | :--- |

4.5 Specification Description on Built-in PLC Function

RVCF has Built-in simple PLC function, user can download Ladder Diagram from PC (Windows base software) very friendly.

4.5.1 Basic Instruction

	\square	-	∇	P	-1	1	NO / NC
Input Instruction					I	i	11~17 / i1~i7
Output Instruction	Q	Q	Q	Q	Q	q	Q1~Q2 / q1~q2
Auxiliary Instruction	M	M	M	M	M	m	M1~MF / m1~mF
Special Register							V1~V7
Counter Instruction	C				C	c	C1~C4 / c1~c4
Timer Instruction	T				T	t	T1~T8 / t1~t8
Analog Comparing Instruction	G				G	g	G1~G4 / g1~g4
Encoder Comparing Instruction	H				H	h	H1~H4 / h1~h4
Operation Instruction	F				F	f	F1~F8 / f1~f8

Description for Special Register
V1: Setting Frequency Range: $0.1 \sim 650.0 \mathrm{~Hz}$
V2: Operation Frequency Range: $0.1 \sim 650.0 \mathrm{~Hz}$
V3: AIN Input value
Range: 0~1000
V4: AI2 Input Value
Range: 0~1000
V5: Keypad VR Input Value
Range: 0~1000
V6: Operation Current
Range: 0.1~999.9A
V7: Torque Value
Range: 0.1~200.0\%

	Upper Differential	Lower Differential	Other Instruction Symbol
Differential Instruction	D	d	
SET Instruction			\mathbf{A}
RESET Instruction			V
P Instruction			P

Open circuit (On status)	""	
Short circuit (Off status)	"--"	

Connection Symbol	Description
$\boldsymbol{-}$	Connecting left and right Components
$\boldsymbol{\perp}$	Connecting left, right and upper Components
$\mathbf{\top}$	Connecting left, right, upper and lower Components
\mathbf{T}	Connecting left, right and lower Components

4.5.2 Function of Basic Instruction

Function D (d) Command
Sample 1: I1 -D — [Q1

I1	OFF	ON	OFF
D	OFF	ON	OFF
Q1	OFF	$\overleftrightarrow{\mathrm{ON}}$	OFF
Sample 2:	i1 -d-[Q1		
I1	OFF	ON	OFF
I1 is the reverse phase of il			
i1	ON	OFF	ON

d1	OFF	ON		OFF
Q1	OFF	$\overleftrightarrow{\mathrm{ON}}$	One complete scan period	OFF

© SET (土) Output

RESET ($\boldsymbol{\nabla}$) Output

I1 is the reverse phase of i1

4.5.3 Function of Basic Instruction Counter

(1) Counter

Sample:
Input under the Ladder Program Mode

The ON/OFF of C3 input count pulse is controlled by I1 and i 2 .

Input under the Function Program Mode

(2) Counter Mode 2
(1) $=2$

(5)	20
(4)	

Note:
Under this Mode, the counting preset value appeared will be greater than 20, unlike the Mode 1 in which the value is locked at 20.
(3) The counter Mode 3 is similar to the counter Mode 1 except that the former can memory the recorded value after the power is cut off and continued counting when the power is turned on at the next time.
(4) The counter Mode 4 is similar to the counter Mode 2 except that the former can memory the recorded value after the power is cut off and continued counting when the power is turned on at the next time.

Timer

Symbol	Description
1	Timing Mode (1-7)
2	Timing unit $1: 0.0-999.9 \mathrm{sec}$ $2: 0-9999 \mathrm{sec}$ $3: 0-9999 \mathrm{~min}$
3	Use (11~f8) to RESET the timing value ON: the counter is initialized to zero and 6 OFF OFF: the counter continues to count
4	Preset Timing Value
5	Target (setting) Timing Values
6	The code of the Timer (T1~T8 total: 8 groups).

(1) Timer Mode 1 (ON-Delay A Mode)

(3) Enable reset relay
Current value $=0$
Enable reset relay
 Current value $=0$

Sample:

Input under the Ladder Program Mode

(2) Timer Mode 2 (ON-Delay B Mode)

(3) Timer Mode 3 (OFF-Delay A Mode)

(6)

Enable reset relay | OFF |
| :--- |
| $\mathrm{t}=\mathrm{a}$ a time period set in the counter |

4) Timer Mode 4 (OFF-Delay B Mode)

(5) Timer Mode 5 (Flash A Mode)

(6) Timer Mode 6 (Flash B Mode)

$$
\mathrm{t}=\mathrm{a} \text { time period set in the counter }
$$

(7) Timer Mode 7 (Flash C Mode)

Enable reset relay
Current value $=0$

Analog comparator

Symbol	Description
1	Analog comparison mode (1-3)
2	Selection of the input comparison value
3	Analog input value
4	Setting reference comparison value (upper limit)
5	Setting reference comparison value (lower limit)
6	Output terminals of analog comparator (G1-G4)

Analog Comparison Mode (1-3)

(1) Analog comparator mode 1 ($3 \leq 5,6$ ON)
(2) Analog comparator mode $2(3 \geq 4,6 \mathrm{ON})$
(3) Analog comparator mode 3 ($5 \leq 3, \leq 4,6$ ON)

Selection of the input comparison value (V1-V7)
(1) The input comparison value $=$ V1: Setting Frequency
(2) The input comparison value $=$ V2: Operation Frequency
(3) The input comparison value $=\mathrm{V} 3$: AIN Input Value
(4) The input comparison value $=$ V4: Al2 Input Value
(5) The input comparison value $=\mathrm{V} 5$: Keypad VR input Value
(6) The input comparison value =V6: Operation Current
(7) The input comparison value $=\mathrm{V} 7$: Torque Value

Encoder input Comparing Instruction

Symbol	Description
1	Encoder control mode (1-2)
2	Use (11 ~ f8) to set counting up or counting down OFF: counting up (0, 1, 2, 3, 4....) ON: counting down ($\ldots .3,2,1,0)$
3	Use (I1~f8) to Reset counting value.
4	A1, Encoder Input Value/Encoder dividing ratio (6
5	A2, Setting comparing value
6	C, Encoder dividing ratio
7	Encoder comparing output terminal, H1~H4

(1)Control Mode 1

Encoder Comparing Function: A1/C \geq A2 Comparing Output
(2) Control Mode 2

Encoder Comparing Function: A1/C \leq A2 Comparing Output

Comparison Enable/ Disable of the Encoder input value is determined by the Ladder Program ON/OFF.

Running Instruction

Symbol	Description
1	Running mode could be set via I1~f8 OFF: (FWD) ON: (REV)
2	Segment Speed could be set via I1~f8 OFF: Operating at the frequency set on (7) ON: Operating at the frequency set on 8
3	Select constant or V3, V5 for Setting Frequency
4	Select constant or V3, V5 for Preset Speed
5	Acceleration Time
6	Deceleration Time
7	Setting Frequency (Could be a constant or V3, V5)

Sample:

Input under the Ladder Program Mode

Chapter 5: Troubleshooting and maintenance

5.1. Error display and remedy

5.1.1. Errors which can not be recovered manually			
Display	Error	Cause	Remedy
CPF	Program problem	External noise interference	Connect a parallel $R C$ burst absorber across the magnetizing coil of the magnetic contactor that causes interference
EPR	EEPROM problem	Faulty EEPROM	Replace EEPROM
-OV @-	Voltage too high during stop	Detection circuit malfunction	Send the inverter back for repairing
-LV @-	Voltage too low during stop	1. Power voltage too low 2. Restraining resistor or fuse burnt out. 3. Detection circuit malfunctions	1. Check if the power voltage was correct or not 2. Replace the restraining resistor or the fuse 3. Send the inverter back for repairing
-OH @-	The inverter is overheated during stop	1. Detection circuit malfunctions 2. Ambient temperature too high or bad ventilation	1. Send the inverter back for repairing 2. Improve ventilation conditions
CTER	Current Sensor detecting error	Current sensor error or circuit malfunctions	Send the inverter back for repairing

Note: @ the Failure contact does not function.
5.1.2. Errors which can be recovered manually and automatically

Display	Error	Cause	Remedy
OC-S	Over current at start	1. The motor wind and enclosure short circuit 2. The motor contacts and earth short circuit 3. The IGBT module ruined	1. Inspect the motor 2. Inspect the wire 3. Replace the transistor module
OC-D	Over-current at deceleration	The preset deceleration time is too short.	Set a longer deceleration time
OC-A	Over-current at acceleration	1. Acceleration time too short 2. The capacity of the motor higher than the capacity of the inverter 3. Short circuit between the motor coil and the shell 4. Short circuit between motor wiring and earth 5. IGBT module damaged	1. Set a longer acceleration time 2. Replace a inverter with the same capacity as that of the motor 3. Check the motor 4. Check the wiring 5. Replace the IGBT module
OC-C	Over-current at fixed speed	1. Transient load change 2. Transient power change	1. Increase the capacity of the inverter 2. Rerun parameter auto tuning $(0-06=$ 0001) 3. Reduce stator resistance $(14-0)$ if the above remedies are helpless
OV-C	Voltage too high during operation/deceleration	1. Deceleration time setting too short or large load inertia 2. Power voltage varies widely	1. Set a longer deceleration time 2. Add a brake resistor or brake module 3. Add a reactor at the power input side 4. Increase inverter capacity
Err4	Illegal interrupt of CPU	Outside noise interference	Send back to repair if it happens many times
OVSP	Over speed during operating	1. Moter load too big or Inverter capacity too small 2. Moter parameter error (sensorless mode) 3. The gain is too big during sensorless mode operating 4. The Current detect circuit fault	1. Increase acceleration/deceleration time (3-02/3-03) 2. Input correct motor Parameter 3. Change stator Resistance gain and Rotator resistance gain (14-0/14-1), suggest that decrease 50~100, until 0 4. Send back to Carlo Gavazzi

5.1.3 Errors which can be recovered manually but not automatically

Display	Error	Cause	Remedy
OC	Over-current during stop	1. Detection circuit malfunctions 2. Bad connection for CT signal cable	1. Check the noise between Power line and motor line 2. Send the inverter back for repairing
OL1	Motor overload	1. Heavy load 2. Inappropriate settings of 0-02, 9-08~911	1. Increase the motor capacity 2. Set 0-02, 9-08~9-11 properly
OL2	Inverter overload	Heavy Load	Increase the inverter capacity
OL3	Over torque	1. Heavy Load 2. Insufficient settings of 9-14, 9-15	1. Increase the inverter capacity 2. Set 9-14, 9-15 properly
LV-C	Voltage too low during operation	1. Power voltage too low 2. Power voltage varies widely 3. Main Circuit Relay error	1. Improve power quality or increase the value of 2-01 2. Set a longer acceleration time 3. Increase inverter capacitor 4. Add a reactor at the power input side 5. Send the inverter back for repairing
$\mathrm{OH}-\mathrm{C}$	Heat sink temperature too High during operation	1. Heavy load 2. Ambient temperature too high or bad ventilation	1. Check if there are any problems with the load 2. Increase inverter capacity 3. Improve ventilation conditions

5.1.4 Special conditions

Display	Error	Cause
STP0	Zero speed stop	Happened when preset frequency <0.1Hz
STP1	Fail to start directly	1. If the inverter is set as external terminal control mode (1-00=0001) and direct start is disabled (2-04=0001), the inverter cannot be started and will flash STP1 when operation switch turned to ON after applying power (refer to descriptions of 2-04). 2.
STrect start is possible when 2-04=0001.		

5.1.5 Operation errors

Display	Error	Cause	Remedy
LOC	Parameter and frequency reverse already locked	1. Attempt to modify frequency /parameter while 3-17>0000 2. Attempt to reverse while 102=0001	1. Set $3-17=0000$ 2. Set $1-02=0000$
Err1	Key operation error	1. Press $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ while 1-06>0000 or running at preset speed. 2. Attempt to modify the parameter can not be modified during operation (refer to the parameter list).	1. The $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ is available for modifying the parameter only when $1-06=0000$ 2. Modify the parameter while STOP
Err2	Parameter setting error	1. $3-01$ in the range of $3-13 \pm 3-16$ or $3-14 \pm 3-16$ or $3-15 \pm 3-16$ 2. $3-00 \leq 3-01$ 3. The setting error as performing Auto tuning (e.g. $1-00 \neq 0$, 1$06 \neq 000$)	1. Modify 3-13~3-15 or 3-16 2. $3-00>3-01$ Set $1-00=0000$, $1-06=0000$ during Auto tuning
Err5	Modification of parameter is not available in communication	1. Issue a control command during communication disabled 2. Modify the function 13-1~13-4 during communication	1. Issue enable command before communication 2. Set the very parameter of the function before communication
Err6	Communication failed	1. Wiring error 2. Communication parameter setting error. 3. Sum-check error 4. Incorrect communication protocol	1. Check hardwareand wiring 2. Check Function 13-1~13-4
Err7	Parameter conflict	1. Attempt to modify the function $15-0$ 2. Voltage and current detection circuit is abnormal	If Reset inverter is not available, please send the inverter back for repair
Err8	Factory setting error	When PLC is Running, Perform factory setting	Please perform factory setting before PLC stops.
Epr1	Parameter setting error copy unit failed	1. Set $3-18=0001 / 0002$ without connecting copy unit. 2. Copy unit failed. 3. The HP rating don't match between copy unit and inverter	1. Modify $3-18$ 2. Replace copy unit 3. The HP rating need to be the same
Epr2	Parameter not match	Compare the parameter and inverter, and their parameter are not the same.	1. Rewrite again 2. Replace copy unit

5.2 General functional troubleshooting

Status	Checking point	Remedy
Motor can not run	Is power applied to L1(L), L2, and L3(N) terminals (is the charging indicator lit)?	- Is the power applied? - Turn the power OFF and then ON again. - Make sure the power voltage is correct. - Make sure screws are secured firmly.
	Are there voltage across the output terminal T1, T2, and T3?	- Turn the power OFF and then ON again.
	Is overload causing the motor blocked?	- Reduce the load to let the motor running.
	Are there any abnormalities in the inverter?	
	Is forward or reverse running command issued?	
	Has analog frequency signal been input?	- Is analog frequency input signal wiring correct? - Is voltage of frequency input correct?
	Is operation mode setting correct?	- Operate operations through the digital panel.
Motor runs inversely	Are wiring for output terminals $\mathrm{T} 1, \mathrm{~T} 2$, and T3 correct?	- Wiring must match U, V, and W terminals of the motor.
	Are wiring for forward and reverse signals correct?	- Check wiring are correct if necessary.
The motor speed can not be regulated.	Are wiring for analog frequency inputs correct?	- Check wiring are correct if necessary.
	Is the setting of operation mode correct?	- Check the operation mode of the operator.
	Is the load too heavy?	- Reduce the load.
Motor running speed too high or too low	Are specifications of the motor (poles, voltage...) correct?	- Confirm the motor's specifications.
	Is the gear ratio correct?	- Confirm the gear ratio.
	Is the setting of the highest output frequency correct?	- Confirm the highest output frequency.
Motor speed varies unusually	Is the load too heavy?	- Reduce the load.
	Does the load vary largely?	- Minimize the variation of the load. - Increase capacities of the inverter and the motor.
	Is the input power lack of phase?	- Add an AC reactor at the power input side if using singlephase power. - Check wiring if using three-phase power.

5.3 Quick troubleshooting of RVCF

Troubleshooting for OC, OL error displays

Troubleshooting for OV, LV error

The motor can not run

The motor is overheated

Motor runs unevenly

5.4 Routine inspection and period inspection

To ensure stable and safe operations, check and maintain the inverter regularly and periodically. The table below lists the items to be check to ensure stable and safe operations.
Check these items 5 minutes after the "Charge" indicator goes out to prevent service persons from being hurt by residual electric power.

Items	Details	Checking period		Methods	Criteria	Remedies
		Daily	1Year			
Circumstances around the machine	Confirm the temperature and humidity around the machine	\checkmark		Measure with thermometer and hygrometer according to installation notices.	Temperature: $-10 \sim+40^{\circ} \mathrm{C}$ Humidity: Below 95\%RH	Improve the circumstances
	Are there inflammables piled up around?	\checkmark		Visual check	No foreign matters	
Installation and grounding of the inverter	Any unusual vibration from the machine	\checkmark		Visual, hearing	No foreign matters	Secure screws
	Is the grounding resistance correct?		\checkmark	Measure the resistance with a multi-tester	200V series: below 100Ω 400V series: below 10Ω	Improve the grounding
Input power voltage	Is the voltage of the main circuit correct?	\checkmark		Measure the voltage with a multi-tester	Voltage must conform with the specifications	Improve input voltage
External terminals and internal mounting screws of the inverter	Are secure parts loose?		\checkmark	Visual check Check with a screwdriver	No abnormalities	Secure or send back for repair
	Is the terminal base damaged?		\checkmark			
	Obvious rust stains		\checkmark			
Internal wiring of the inverter	Deformed or crooked		\checkmark	Visual check	No abnormalities	Replace or send back for repair
	Any damage of the wrapping of the conducting wire		\checkmark			
Heat sink	Heap of dust or mingled trifles	\checkmark		Visual check	No abnormalities	Clean up heaped dust
Printed circuit board	Heap of conductive metal or oil sludge		\checkmark	Visual check	No abnormalities	Clean up or replace the circuit board
	Discolored, overheated, or burned parts		\checkmark			
Cooling fan	Unusual vibration and noise		\checkmark	Visual or hearing check	No abnormalities	Replace the cooling fan
	Heap of dust or mingled trifles	\checkmark		Visual check		Clean up
Power component	Heap of dust or mingled trifles		\checkmark	Measure with a multi-tester	No short circuit or broken circuit in three-phase output	Replace power component or inverter
	Check resistance between each terminals		\checkmark			
Capacitor	Any unusual odor or leakage	\checkmark		Visual check	No abnormalities	Replace capacitor or inverter
	Any inflation or protrusion	\checkmark				

5.5 Maintenance and Inspection

Inverter doesn't need daily inspection and maintenance.
To ensure long-term reliability, follow the instructions below to perform regular inspection. Turn the power off and wait for the charge indicator (LED101) to go out before inspection to avoid potential shock hazard possibly caused by charges resides in high-capacity capacitors.
(1) Clean up the accumulation of muck inside the inverter.
(2) Check if there are any loose terminal screws and securing screws. Tighten all loose screws.
(3) Insulation tests
(a) Disconnect all leads connecting T-VERTER with external circuit when performing insulation tests against external circuit.
(b) Internal insulation test should be performed against the main circuit of the TVERTER body only. Use a high resistance DC 500V meter with insulating resistance higher than $5 \mathrm{M} \Omega$.

Caution! Do not perform this test against the control circuit.

Chapter 6:
 PeripheralsComponents

6.1 Reactor specification at Input side

Model	AC inductance at input side	
	Current (A)	Inductance $\mathbf{(m H)}$
RVCFA1200040 / RVCFA3200040	5.0	2.1
RVCFA1200075 / RVCFA3200075	5.0	2.1
RVCFB1200150 / RVCFA3200150	10.0	1.1
RVCFB1200220 / RVCFB3200220	15.0	0.71
RVCFB3200370	20.0	0.53
RVCFC3200550	30.0	0.35
RVCFC3200750	40.0	0.265
RVCFD3201100	60.0	0.18
RVCFD3201500	80.0	0.13
RVCFD3201850	90.0	0.12
RVCFE3202200	120.0	0.09
RVCFE3203000	160.0	0.07

Model	AC inductance at input side	
	Current (A)	Inductance $\mathbf{(m H)}$
RVCFA3400075	2.5	8.40
RVCFA3400150	5.0	4.20
RVCFB3400220	7.5	3.60
RVCFB3400370	10.0	2.20
RVCFC3400550	15.0	1.42
RVCFC3400750	20.0	1.06
RVCFC3401100	30.0	0.70
RVCFD3401500	40.0	0.53
RVCFD3401850	50.0	0.42
RVCFD3402200	60.0	0.36
RVCFE3403000	80.0	0.26
RVCFE3403700	90.0	0.24
RVCFF3404500	120.0	0.18
RVCFF3405500	150.0	0.15

6.2 Reactor specification at DC side

Model	AC inductance at input side	
	Current (A)	Inductance $\mathbf{(m H)}$
RVCFA1200040 / RVCFA3200040	3.1	5.65
RVCFA1200075 / RVCFA3200075	4.5	3.89
RVCFB1200150 / RVCFB3200150	7.5	2.33
RVCFB1200220 / RVCFB3200220	10.5	1.67
RVCFB3200370	17.5	1.00
RVCFC3200550	26.0	0.67
RVCFC3200750	35.0	0.50
RVCFA3400075	2.3	15.22
RVCFA3400150	3.8	9.21
RVCFB3400220	5.2	6.73
RVCFB3400370	8.8	3.98
RVCFC3400550	13.0	2.69
RVCFC3400750	17.5	2.00
RVCFC3401100	25.0	1.40

6.3 Braking unit and braking resistor

RVCF series braking current calculation

Inverter Model	Braking Unit		Suitable Motor Capacit (HP)	Suitable Motor Capacit (KW)	Braking resistor Specification		Braking resistor ED(\%)	Braking torque (\%)	Braking Resistor Model
	Model	Number used			(W)	(Ω)			
RVCFA1200040 RVCFA3200040	-	-	0.5	0.4	150	200	10	238	-
RVCFA1200075 RVCFA3200075	-	-	1.0	0.75	150	200	10	119	-
RVCFB1200150 RVCFB3200150	-	-	2.0	1.5	150	100	10	119	CRBR-260W-100R
RVCFB1200220 RVCFB3200220	-	-	3.0	2.2	260	70	10	115	-
RVCFB3200370	-	-	5.0	3.7	390	40	10	119	CRBR-700W-40R
RVCFC3200550	-	-	7.5	5.5	520	30	10	108	-
RVCFC3200750	-	-	11	7.5	780	20	10	119	-
RVCFD3201100	-	-	15	11	2400	13.6	10	117	-
RVCFD3201500	-	-	20	15	3000	10	10	119	-
RVCFD3201850	RVCFTBU230	1	25	18.5	4800	8	10	119	-
RVCFE3202200	RVCFTBU230	1	30	22	4800	6.8	10	117	-
RVCFE3203000	RVCFTBU230	2	40	30	3000	10	10	119	-
RVCFA3400075	-	-	1	0.75	150	750	10	126	-
RVCFA3400150	-	-	2	1.5	150	400	10	119	-
RVCFB3400220	-	-	3	2.2	260	250	10	126	CRBR-260W-250R
RVCFB3400370	-	-	5	3.7	400	150	10	126	CRBR-700W-150R
RVCFC3400550	-	-	7.5	5.5	600	130	10	102	CRBR-1100W-130R
RVCFC3400750	-	-	10	7.5	800	100	10	99	CRBR-750W-100R
RVCFC3401100	-	-	15	11	1600	50	10	126	CRBR-1500W-50R
RVCFD3401500	-	-	20	15	1500	40	10	119	CRBR-1500W-40R
RVCFD3401850	RVCFTBU430	1	25	18.5	4800	32	10	119	CRBR-5000W-32R
RVCFD3402200	RVCFTBU430	1	30	22	4800	27.2	10	117	CRBR-5000W-27R2
RVCFE3403000	RVCFTBU430	1	40	30	6000	20	10	119	CRBR-6000W-20R
RVCFE3403700	RVCFTBU430	$2{ }^{4}$	50	37	9600	16	10	119	CRBR-5000W-32R
RVCFF3404500	RVCFTBU430	2^{4}	60	45	9600	13.6	10	117	CRBR-5000W-27R2
RVCFF3405500	RVCFTBU430	$2{ }^{4}$	75	55	6000	20	10	126	CRBR-6000W-20R

Note 1: Formula for brake resistor: W=(Vpnb * Vpnb) * ED\% / R

1. W : braking resistor consumption power
2. Vpnb: braking voltage ($230 \mathrm{~V}=380 \mathrm{VDC}, 480 \mathrm{~V}=760 \mathrm{VDC}$)
3. ED\%: braking effective period
4. R: using braking resistor

Note 2: Above 25HP, please add Braking Unit: 200V RVCFTBU230 400V RVCFTBU430 About the detail information, please contact with your supplier.
Note 3: When set up braking unit and resistor, please make sure there is adequately ventilated environment and appropriate distance for setting
Note 4. Device configuration: install the (RVCFTBU430 + Braking resistor) $\times 2$

6.4 Digital operator and extension cable

All models

A. Remote Cable Kit

Inverter Model	Extension Cable Kit	Cable Length (Meter)
All models		
of		
RVCF series		

C. Operation procedure:

Warning: Turn OFF the power supply. The following procedures should be performed after there is no display on the keypad.

1. Remove the keypad from the Inverter.
2. Please refer to Diagram before mounting the keypad to your machine or Panel.
3. Connect the inverter and the keypad with the remote cable in accordance with the above Diagram.
Supply the power to operate ONLY after all elements are securely fixed.

RVCF Keypad Mounting Dimensions (mm)

B. Content

RVCF Keypad Installation Dimensions (mm)

6.5 EMC Filter

The inverter adopts rapid switching components to improve the efficiency of the motor and to reduce the motor noise. Using the EMC Filter allows the EMI (Electromagnetic Interference) and RFI (Radio Frequency interference) to be controlled within certain range.

EMC Directives

The inverter with optional filter complies with the EMC directives 89/336/EEC, limiting the environmental EMI and RFI. Independent tests have demonstrated compliance to the following standards when the optional filters are used.
EMI radio standard, EMS immunity standard
EN 55011, class A / EN 61800-3 category C2

Filter Selection

Drive			Filter	
Model	Rated power (kW)	Input Current (A)	Model	Rated Current (A)
RVCFA1200040	0.4	8.5	B84142-A10-R	10
RVCFA1200040F			Built-in	
RVCFA1200075	0.75	12.0	B84142-A20-R	20
RVCFA1200075F			Built-in	
RVCFB1200150	1.5	16.0	B84142-A20-R	20
RVCFB1200150F			Built-in	
RVCFB1200220	2.2	23.9	B84142-A30-R	30
RVCFB1200220F			Built-in	
RVCFA3200040	0.4	4.5	B84143-A10-R106	10
RVCFA3200075	0.75	6.5	B84143-A10-R106	
RVCFA3200150	1.5	11.0	B84143-A20-R106	20
RVCFB3200220	2.2	12.5	B84143-A20-R106	
RVCFB3200370	3.7	20.5	B84143-A25-R105	25
RVCFC3200550	5.5	33.0	B84143-A35-R106	35
RVCFC3200750	7.5	42.0	B84143-A50-R106	50
RVCFD3201100	11	57.0	B84143-A65-R106	65
RVCFD3201500	15	70.0	B84143-A80-R106	80
RVCFD3201850	18.5	85.0	B84143-A100-R106	100
RVCFE3202200	22	108.0	B84143-A120-R105	120
RVCFE3203000	30	138.0	B84143-A150-R105	150

Drive			Filter	
Model	Rated power (kW)	Input Current (A)	Model	Rated Current (A)
RVCFA3400075	0.75	4.2	B84143-A10-R106	10
RVCFA3400075F			Built-in	
RVCFA3400150	1.5	5.6	B84143-A10-R106	10
RVCFA3400150F			Built-in	
RVCFB3400220	2.2	7.3	B84143-A10-R106	10
RVCFB3400220F			Built-in	
RVCFB3400370	3.7	11.6	B84143-A20-R106	20
RVCFB3400370F			Built-in	
RVCFC3400550	5.5	17	B84143-A20-R106	20
RVCFC3400550F			Built-in	
RVCFC3400750	7.5	23.0	B84143-A25-R105	25
RVCFC3400750F			Built-in	
RVCFC3401100	11	31.0	B84143-A35-R106	35
RVCFC3401100F			Built-in	
RVCFD3401500	15	38.0	B84143-A50-R106	50
RVCFD3401850	18.5	48.0	B84143-A50-R106	
RVCFD3402200	22	56.0	B84143-A65-R106	65
RVCFE3403000	30	75.0	B84143-A80-R106	80
RVCFE3403700	37	92.0	B84143A100-R106	100
RVCFF3404500	45	112.0	B84143-A120-R105	120
RVCFF3405500	55	142.0	B84143-A150-R105	150

6.5.1 EMC Filter Dimensions (mm)

Terminal blocks $4 \mathrm{~mm}^{2}$

B84142-A30-R

Terminal blocks $6 \mathrm{~mm}^{2}$
Tightening torque $1.5 \ldots 1.8 \mathrm{Nm}$

B84143-A25-R105

B84143-A35-R106

PE M5×19 Tightening torque $2 \pm 0.1 \mathrm{Nm}$

B84143-A50-R106 / B84143-A65-R106

6.6 Interface Card

6.6.1 RS-485 Interface Card (Model: RVFSIF485)

RVFSIF485 Wiring Diagram:

Note:
Please put on the cover of inverter to avoid the Interface Card disturbed by outside static electricity. Please using isolated RS232/RS485 converter to link PC and interface card to avoid damage equipment.

6.6.2 RS-232 Interface Card (Model: RVFSIF232)

RVFSIF232 Wiring Diagram:

6.6.3 Program Copy Unit (Model: RVFSIFMP)

Appendix 1:
 RVCF Motor Internal Parameter List

Factory Setting of the Motor Internal Parameters:

Parameter Model	14-0 (Stator Resistance)	(Rotor Resistance)	14-2 (Equivalent Inductance)	14-3 (Magnetization Current)	$\begin{gathered} \text { 14-4 } \\ \text { (Iron Loss } \\ \text { Conductance) } \end{gathered}$
RVCFA1200040 RVCFA3200040	400	350	800		205
RVCFA1200075 RVCFA3200075 RVCFA3400075	380	300		7200	
RVCFB1200150 RVCFA3200150 RVCFA3400150	300	280			
RVCFB1200220 RVCFB3200220 RVCFB3400220	280	240		4100	
RVCFB3200370 RVCFB3400370	260	200			
RVCFC3200550 RVCFC3400550	240	160			
RVCFC3200750 RVCFC3400750	220	150			
RVCFD3201100 RVCFC3401100	200	140			
$\begin{aligned} & \text { RVCFD3201500 } \\ & \text { RVCFD3401500 } \end{aligned}$	180	130			
RVCFD3201850 RVCFD3401850					
RVCFE3202200 RVCFD3402200					
RVCFE3203000 RVCFE3403000					
RVCFE3403700					
RVCFF3404500					
RVCFF3405500					

Note:

1. The above motor internal parameters are idle under V/F Control Mode. These parameters are usable under sensorless control mode.
2. The motor parameters (14-0~14-4) are not be modified when factory setting under sensorless mode. The internal parameters after auto-tuning will be maintained.
3. The motor parameters (14-0~14-4) will be modified to factory setting completely after changing the Drive Horsepower code (15-0).

Appendix 2:
 RVCF parameter setting list

Customer					Inverter Model		
Using Site					Contact Phone		
Address							
Parameter Code	Setting Content						
0-00		3-14		6-06		10-07	
0-01		3-15		6-07		10-08	
0-02		3-16		6-08		10-09	
0-03		3-17		7-00		11-00	
0-04		3-18		7-01		11-01	
0-05		3-19		7-02		11-02	
0-06		3-20		7-03		11-03	
0-07		3-21		7-04		11-04	
0-08		3-22		7-05		11-05	
1-00		3-23		8-00		11-06	
1-01		3-24		8-01		11-07	
1-02		3-25		8-02		12-00	
1-03		3-26		8-03		12-01	
1-04		3-27		8-04		12-02	
1-05		3-28		8-05		12-03	
1-06		3-29		9-00		12-04	
1-07		4-00		9-01		12-05	
2-00		4-01		9-02		12-06	
2-01		4-02		9-03		13-00	
2-02		4-03		9-04		13-01	
2-03		4-04		9-05		13-02	
2-04		4-05		9-06		13-03	
2-05		5-00		9-07		13-04	
2-06		5-01		9-08		13-05	
3-00		5-02		9-09		13-06	
3-01		5-03		9-10		14-00	
3-02		5-04		9-11		14-01	
3-03		5-05		9-12		14-02	
3-04		5-06		9-13		14-03	
3-05		5-07		9-14		14-04	
3-06		5-08		9-15		15-00	
3-07		5-09		10-00		15-01	
3-08		6-00		10-01		15-02	
3-09		6-01		10-02		15-03	
3-10		6-02		10-03		15-04	
3-11		6-03		10-04		15-05	
3-12		6-04		10-05		15-06	
3-13		6-05		10-06			

Appendix 3:
 RVCF Communication Time-out Table

Appendix 4: CE certificate

CARLO GAVAZZ.
 Automation Components
 Administrative and directive headquarter: Via Milano 13, I - 20020 Lainate (MI)
 Tel.: ++39 02 93176.1, Fax ++39 0293176.403
 Internet: http:// www.carlogavazzi.com
 CE Declaration of Conformity

We, Manufacturer, CARLO GAVAZZI LOGISTICS S.p.A., located at Via Milano, 13 20020 Lainate (ITALY), declare under our own responsibility that the products here listed

RVCF series of Motor Controllers Variable Frequency AC Drives

are in conformity with

> The Low-Voltage Directive 73/23/EEC, as amended by 93/68/EEC,
> The EMC Directive $89 / 336$ / EEC, referring to the below listed standards

EN 61800-5-1: Adjustable speed electrical power drive systems. Safety requirements. Electrical, thermal and energy EN 61800-3: Adjustable speed electrical power drive systems. EMC requirements and specific test methods.

EN 61000-6-2: Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments
EN 61000-6-4: Electromagnetic compatibility (EMC). Generic standards. Emission standard for industrial environments
EN 61000-3-2: Electromagnetic compatibility (EMC). Limits. Limits for harmonic current emissions (equipment input current up to and including 16 A per phase)

EN 61000-3-3 Electromagnetic Compatibility (EMC). Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current less than or equal to 16 A per phase and not subject to conditional connection

Compliance with these directives will require the application of a correct installation, maintenance and use conforming to intended purpose of the product, following the supplier's instructions and accepted rules of the art. The product must be installed and connected by skilled personnel who are authorised to be responsible for the safety of the equipment, at all times, even whilst carrying out their normal duties, and are therefore aware of, and can report, possible safety hazards.

CE marking

Design and manufacturing follows the provisions of the Low Voltage Directive of the European Communities as of February 19. 1973 as changed by 93 / 68 / EEC and the EMC Directive 89 / 336 / EEC as changed by 92 / 31 / EEC and 93 / 68 / EEC.

Manufacturer
Place / Date : Lainate, November, 19th / 2008

Signature
Name : Graziano Padovan

Appendix 5:

Approvals Table - UL Listing and CE certification Information

	CE approval	Europe	See attached certificate
CULUS	UL / cULs approval	USA \& Canada	File number E319186
COMPLIANT	RoHS	-	-

AUSTRIA - Carlo Gavazzi GmbH Ketzergasse 374, A-1230 Wien Tel: +43 18884112
Fax: +43 18891053
office@carlogavazzi.at
BELGIUM - Carlo Gavazzi NV/SA Schaarbeeklei 213/3, B-1800 Vilvoorde Tel: +32 22574120
Fax: +32 22574125
sales@carlogavazzi.be
DENMARK - Carlo Gavazzi Handel A/S Over Hadstenvej 40, DK-8370 Hadsten Tel: +45 89606100
Fax: +45 86981530
handel@gavazzi.dk
FINLAND - Carlo Gavazzi OY AB Petaksentie 2-4, Fl-0066 1 Helsinki Tel: +3589756 2000 Fax: +358975620010 myynti@carlogavazzi.fi

FRANCE - Carlo Gavazzi Sarl Zac de Paris Nord II, 69, rue de la Belle Etoile, F-95956 Roissy CDG Cedex Tel: +33 149389860 Fax: +33 148632743 french.team@carlogavazzi.fr

GERMANY - Carlo Gavazzi GmbH
Pfnorstr. 10-14
D-64293 Darmstadt
Tel: +49 615181000
Fax: +49 6151810040
info@gavazzi.de
GREAT BRITAIN - Carlo Gavazzi UK Ltd
7 Springlakes Industrial Estate, Deadbrook Lane, Hants GU12 4UH, GB-Aldershot
Tel: +44 1252339600
Fax: +44 1252326799
sales@carlogavazzi.co.uk

ITALY - Carlo Gavazzi SpA Via Milano 13, 1-20020 Lainate Tel: +39 02931761
Fax: +39 0293176301
info@gavazziacbu.it
NETHERLANDS - Carlo Gavazzi BV
Wijkermeerweg 23,
NL-1948 NT Beverwijk
Tel: +31 251229345
Fax: +31 251226055
info@carlogavazzi.nl
NORWAY - Carlo Gavazzi AS Melkeveien 13, N-3919 Porsgrunn Tel: +47 35930800 Fax: +47 35930801 gavazzi@carlogavazzi.no

PORTUGAL - Carlo Gavazzi Lda
Rua dos Jerónimos 38-B
P-1400-212 Lisboa
Tel: +351 213617060
Fax: +351 213621373
carlogavazzi@carlogavazzi.pt

SPAIN - Carlo Gavazzi SA Avda. Iparraguirre, 80-82, E-48940 Leioa (Bizkaia) Tel: +34 944804037 Fax: +3494480 1061 gavazzi@gavazzi.es

SWEDEN - Carlo Gavazzi AB V:a Kyrkogatan 1,
S-652 24 Karlstad
Tel: +46 54851125
Fax: +46 54851177 info@carlogavazzi.se

SWITZERLAND - Carlo Gavazzi AG
Verkauf Schweiz/Vente Suisse
Sumpfstrasse 32,
CH-632 Steinhausen
Tel: +41 417474535
Fax: +41 417404540
info@carlogavazzi.ch

OUR SALES NETWORK IN NORTH AMERICA

USA - Carlo Gavazzi Inc.
750 Hastings Lane,
USA-Buffalo Grove, IL 60089,
Tel: + 18474656100
Fax: +1 8474657373
sales@carlogavazzi.com

CANADA - Carlo Gavazzi Inc. 2660 Meadowvale Boulevard, CDN-Mississauga Ontario L5N 6M6, Tel: + 19055420979
Fax: +1 9055422248
gavazzi@carlogavazzi.com

MEXICO - Carlo Gavazzi Mexico S.A. de
C.V.

Calle La Montaña no. 28, Fracc. Los Pastores
Naucalpan de Juárez, EDOMEX CP 53340
Tel \& Fax: +52.55.5373.7042
mexicosales@carlogavazzi.com

OUR SALES NETWORK IN ASIA AND PACIFIC

SINGAPORE - Carlo Gavazzi Automation Singapore Pte. Lłd.
61 Tai Seng Avenue \#05-06
UE Print Media Hub
Singapore 534167
Tel: +65 67466990
Fax: +65 67461980

MALAYSIA - Carlo Gavazzi Automation
(M) SDN. BHD.

D12-06-G, Block D12,
Pusat Perdagangan Dana 1,
Jalan PJU 1A/46, 47301 Petaling Jaya,
Selangor, Malaysia.
Tel: +60 378427299
Fax: +60 378427399

CHINA - Carlo Gavazzi Automation
(China) Co. Ltd.
Rm. 2308-2310, 23/F.,
News Building, Block 1,
1002 Shennan Zhong Road,
Shenzhen, China
Tel: +86 75583699500
Fax: +86 75583699300

HONG KONG - Carlo Gavazzi
Automation Hong Kong Ltd.
Unit 3 12/F Crown Industrial Bldg., 106 How Ming St., Kowloon, Hong Kong
Tel: +852 23041228
Fax: +852 23443689

OUR PRODUCTION SITES

Carlo Gavazzi Industri A/S Hadsten - DENMARK

Carlo Gavazzi Ltd
Zejtun - MALTA

Carlo Gavazzi Controls SpA
Belluno - ITALY

Uab Carlo Gavazzi Industri Kaunas Kaunas - LITHUANIA

Carlo Gavazzi Automation
(Kunshan) Co., Ltd.
Kunshan - CHINA

Sense Switch Control Fieldbus

[^0]: * Fuse ratings are based upon 300 V fuses for 230 V inverter, and 500 V for 480 V inverters.

[^1]: \bigcirc
 : LED Lit: LED Flash
 : LED Go Out

