

IO-Link Induktive Sensoren

IBS04, ICS05, ICS08, ICB12, ICB18, ICB30

Instruction manual

Manuale d'istruzione

Betriebsanleitung

Manuel d'instructions

Manual de instrucciones

Brugerveiledning

使用手册

Inhaltsverzeichnis

1.	Einleitung	4
	1.1 Beschreibung	4
	1.2 Gültigkeit der Dokumentation	4
	1.3 Zielgruppe dieser Dokumentation	
	1.4 Verwendung des Produkts	
	1.5 Sicherheitsvorkehrungen	
	1.6 Weitere Dokumente	
	1.7 Abkürzungen	
2.	Produkt	
_,	2.1 Hauptmerkmale	
	2.2 Identifikationsnummer	
	2.3 Betriebsmodi	
	2.3.1 SIO-Modus	
	2.3.2 IO-Link-Modus	
	2.3.3 Hauptmerkmale	
	2.3.4 Konfiguration des Schaltausgangs	
	2.3.5 Interne Sensorparameter	
2		
3.	Schaltpläne	
4.	Inbetriebnahme	
5.	Operation	
	5.1 Benutzerschnittstelle der Sensoren IBSO4, ICSO5 und ICSO8	
_	5.2 Benutzerschnittstelle der Sensoren ICB12, ICB18 und ICB30	
6.	IODD-Datei und Werkseinstellung	
	6.1 IODD-Datei eines IO-Link-Geräts	
	6.2 Werkseinstellung	
7.	Anhang	
	7.1 Abkürzungen	
	7.2 IO-Link-Geräteparameter für IBS04, ICS05 und ICS08	
	7.3 IO-Link-Geräteparameter für ICB12, ICB18 und ICB30	23

1. Einleitung

Diese Anleitung ist ein Referenzleitfaden für die induktiven IO-Link-Näherungssensoren IBS04, ICS05, ICS08, ICB12, ICB18 und ICB30 von Carlo Gavazzi. Sie beschreibt die Installation, Einrichtung und bestimmungsgemäße Verwendung des Produkts.

1.1 Beschreibung

Die Induktivsensoren von Carlo Gavazzi sind Geräte, die gemäß den internationalen IEC-Normen entwickelt und gefertigt sind und den EG-Richtlinien für Niederspannung (2014/35/EU) und Elektromagnetische Verträglichkeit (2014/30/EU) unterliegen.

Carlo Gavazzi Industri behält sich alle Rechte an diesem Dokument vor: Kopien dürfen nur für den internen Gebrauch angefertigt werden.

Wir freuen uns über jeden Hinweis zur Verbesserung dieses Dokuments.

1.2 Gültigkeit der Dokumentation

Diese Anleitung gilt nur für die induktiven IO-Link-Sensoren IBSO4, ICSO5, ICSO8, ICB12, ICB18 und ICB30 und nur solange keine neue Dokumentation veröffentlicht wurde.

Diese Bedienungsanleitung beschreibt die Funktion, den Betrieb und die Installation des Produkts für die bestimmungsgemäße Verwendung.

1.3 Zielgruppe dieser Dokumentation

Diese Anleitung enthält wichtige Informationen zur Installation und muss vom Fachpersonal, das sich mit diesen induktiven Näherungssensoren befasst, gelesen und vollständig verstanden werden.

Wir empfehlen dringend, die Anleitung vor Einbau des Sensors sorgfältig zu lesen. Die Anleitung ist für die spätere Verwendung aufzubewahren. Die Installationsanleitung richtet sich an qualifiziertes technisches Personal.

1.4 Verwendung des Produkts

Induktive Sensoren eignen sich zur berührungslosen Erkennung von eisenhaltigen und eisenfreien metallischen Objekten für die allgemeine Positions- und Präsenzerkennung in industriellen Automatisierungsanwendungen. Die Geräte arbeiten nach dem Wirbelstromprinzip; wenn sich ein metallisches Zielobjekt der Sensoroberfläche nähert, interagiert das vom Sensor erzeugte Magnetfeld mit dem Zielobjekt und löst im Sensor eine Statusänderung aus.

IBS-, ICS- und ICB-Sensoren sind mit IO-Link-Kommunikation ausgestattet. Diese Geräte können über einen IO-Link-Master bedient und konfiguriert werden.

1.5 Sicherheitsvorkehrungen

Dieser Sensor darf nicht in Anwendungen eingesetzt werden, bei denen die Personensicherheit von der Funktion des Sensors abhängt (der Sensor ist nicht gemäß der EU-Maschinenrichtlinie konstruiert).

Installation und Gebrauch müssen durch geschultes technisches Personal mit grundlegenden Kenntnissen in der Elektroinstallation erfolgen.

Der Installateur ist verantwortlich für die korrekte Installation gemäß den örtlichen Sicherheitsvorschriften und muss sicherstellen, dass ein defekter Sensor keine Gefahr für Personen oder Geräte darstellt. Wenn ein Sensor defekt ist, muss er ersetzt und gegen unbefugte Verwendung gesichert werden.

1.6 Weitere Dokumente

Die IODD-Datei und das IO-Link-Parameterhandbuch sind im Internet erhältlich unter http://gavazziautomation.com

1.7 A	okürzungen
1/0	Eingang/Ausgang (Input/Output)
PD	Prozessdaten
SPS	Speicherprogrammierbare Steuerung
SIO	Standard-Eingabe/Ausgabe
SP	Sollwert (Setpoint)
IODD	I/O-Gerätebeschreibung (I/O Device Description)
IEC	Internationale Elektrotechnische Kommission
NO	Schließerkontakt (Normally Open)
NC	Öffnerkontakt (Normally Closed)
UART	Universeller asynchroner Senderempfänger (Universal Asynchronous Receiver-Transmitter)
SO	Schaltausgang (Switching Output)
BDC	Binärer Datenkanal (Binary Data Channel)

2. Produkt

2.1 Hauptmerkmale

Die neuen IO-Link-3-Leiter-Induktivsensoren von Carlo Gavazzi mit erweitertem Erfassungsbereich entsprechen den höchsten Qualitätsstandards und sind in 6 verschiedenen Gehäusen erhältlich:

- IBSO4 zylindrisches Edelstahl-Glattrohr für bündigen Einbau mit M8-Stecker oder 2 Meter PVC-Kabel.
- ICS05 zylindrisches Edelstahl-Gewinderohr für bündigen Einbau mit M8-Stecker oder 2 Meter PVC-Kabel.
- ICS08 zylindrisches Edelstahl-Gewinderohr in kurzem oder langem Gehäuse für bündigen oder nichtbündigen Einbau, mit M8-Stecker oder 2 Meter PVC-Kabel.
- ICB12, ICB18 und ICB30 zylindrisches Gewinderohr aus vernickeltem Messing in kurzem oder langem Gehäuse für bündigen oder nichtbündigen Einbau, mit M12-Stecker oder 2 Meter PVC-Kabel.

Sie können im Standard-I/O-Modus (SIO) betrieben werden; dieser ist der Standardbetriebsmodus. Bei Verbindung zu einem IO-Link-Master schalten sie automatisch in den IO-Link-Modus und können problemlos aus der Ferne bedient und konfiguriert werden.

Dank der IO-Link-Schnittstelle sind diese Geräte wesentlich intelligenter und bieten viele zusätzliche Konfigurationsmöglichkeiten, zum Beispiel Einstellmöglichkeiten für Schaltabstand und Hysterese, Timerfunktionen für die Ausgabe sowie erweiterte Funktionen wie Temperaturalarme, Frequenzüberwachung und Teilerfunktion.

2.2 Identifikationsnummer

Code	Option	Beschreibung		
- 1		Sensorprinzip: induktiver Sensor		
	В	Zylindrisches Gehäuse mit glattem Schaft		
ш	C	Zylindrisches Gehäuse mit Gewindeschaft		
	S	Edelstahlgehäuse		
ш	В	Gehäuse aus vernickeltem Messing		
	04	Gehäuse Ø4		
	05	Gehäuse M5		
	08	Gehäuse M8		
ш	12	Gehäuse M12		
	18	Gehäuse M18		
	30	Gehäuse M30		
	S	Kurzes Gehäuse (für Ø4-Sensoren mit glattem Schaft)		
	S23	Kurzes Gehäuse mit Gewindelänge 23 mm		
	530	Kurzes Gehäuse mit Gewindelänge 30 mm		
	L45	Kurzes Gehäuse mit Gewindelänge 45 mm		
	L50	Langes Gehäuse mit Gewindelänge 50 mm		
	F	Bündiger Einbau		
ш	N	Nichtbündiger Einbau		
		Maximaler Schaltabstand:		
	08	0,8 mm (für IBSO4 und ICSO5)		
	15	1,3 mm (für IBSO4 und ICSO5)		
_	02	2 mm (für ICS08 bündig)		
	04	4 mm (für ICS08 nichtbündig und ICB12 bündig)		
	08	8 mm (für ICB12 nichtbündig und ICB18 bündig)		
	14	14 mm (für ICB18 nichtbündig)		
	15	15 mm (für ICB30 bündig)		
	22	22 mm (für ICB30 nichtbündig)		
	M5	M8-Stecker		
	M1	M12-Stecker (für ICB)		
	A2	2 m PVC-Kabel		
10	-	IO-Link-Version		

Bei speziell angepassten Versionen sind weitere Zeichen möglich.

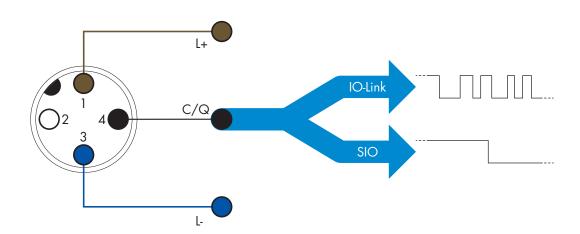
2.3 Betriebsmodi

IO-Link-Induktivsensoren verfügen über einen Schaltausgang (SO) und können in zwei verschiedenen Modi betrieben werden: SIO-Modus (Standard-I/O-Modus) oder IO-Link-Modus.

2.3.1 SIO-Modus

Wenn der Sensor im SIO-Modus arbeitet (Standardeinstellung), ist kein IO-Link-Master erforderlich. Das Gerät arbeitet als Standard-Induktivsensor und kann über ein Feldbus- oder Steuergerät (z. B. SPS) betrieben werden, das an den PNP-, NPN- oder Push-Pull-Digitaleingang (Standard-I/O-Anschluss) des Sensors angeschlossen ist. Zu den größten Vorteilen dieser induktiven Sensoren zählt die Möglichkeit, sie über einen IO-Link-Master zu konfigurieren; nach der Trennung vom Master behalten die Sensoren die letzten Parameter und Konfigurationseinstellungen bei.

Dadurch kann zum Beispiel der Ausgang des Sensors als PNP, NPN oder Push-Pull konfiguriert werden, oder es lassen sich Timerfunktionen wie T-on- und T-off-Verzögerungen hinzufügen und mehrere Anwendungsanforderungen mit dem selben Sensor abdecken.


2.3.2 IO-Link-Modus

IO-Link ist eine standardisierte IO-Technologie, die weltweit als internationaler Standard (IEC 61131-9) anerkannt ist.

Sie gilt heute als die "USB-Schnittstelle" für Sensoren und Aktoren im Umfeld der Industrieautomation.

Bei Änschluss des Sensors an einen IO-Link-Port sendet der IO-Link-Master eine Weckanforderung (Weckimpuls) an den Sensor, der daraufhin automatisch in den IO-Link-Modus schaltet. Danach startet automatisch eine bidirektionale Punkt-zu-Punkt-Kommunikation zwischen Master und Sensor.

Für die IO-Link-Kommunikation ist nur ein ungeschirmtes 3-adriges Standardkabel mit einer maximalen Länge von 20 m erforderlich.

Die IO-Link-Kommunikation erfolgt mit 24-V-Pulsmodulation und Standard-UART-Protokoll über die Schalt- und Kommunikationsleitung (PIN 4, schwarz) (kombinierter Schaltzustand- und Datenkanal C/Q).

Ein 4-poliger M12-Stecker beispielsweise verfügt über:

- Spannungsversorgung Pluspol: Pin 1, braun
- Spannungsversorgung Minuspol: Pin 3, blau
- Digitalausgang 1: Pin 4, schwarz
- Digitalausgang 2: Pin 2, weiß

Die Übertragungsrate von IBS-, ICS- und ICB-Sensoren beträgt 38,4 kBaud (COM2).

Nach Anschluss an den IO-Link-Port hat der Master Fernzugriff auf alle Parameter des Sensors und auf erweiterte Funktionen; dadurch können die Einstellungen und die Konfiguration im Betrieb geändert und Diagnosefunktionen wie Temperaturwarnungen und Temperaturalarme sowie Prozessdaten genutzt werden. Dank IO-Link können ab V1.1 die Herstellerdaten und die Teilenummer (Servicedaten) des verbundenen Geräts angezeigt werden. Dank der Datenspeicherfunktion können bei einem Gerätetausch alle im alten Gerät gespeicherten Informationen automatisch auf das neue Gerät übertragen werden.

Durch den Zugriff auf interne Parameter kann der Benutzer auf Leistungsdaten des Sensors zugreifen, beispielsweise durch Auslesen der internen Temperatur.

Ereignisdaten bieten dem Benutzer die Möglichkeit, Diagnoseinformationen wie Fehler, Alarme, Warnungen oder Kommunikationsprobleme abzurufen.

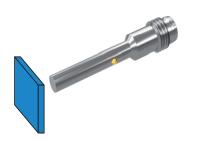
Es gibt zwei verschiedene Kommunikationsarten zwischen dem Sensor und dem Master, und beide sind unabhängig voneinander:

- Zyklisch für Prozessdaten und Wertstatus diese Daten werden zyklisch ausgetauscht.
- Azyklisch für Parameterkonfiguration, Identifikationsdaten, Diagnoseinformationen und Ereignisse (z. B. Fehlermeldungen oder Warnungen) diese Daten können auf Anfrage ausgetauscht werden.

2.3.3 Hauptmerkmale

Der Sensor misst drei verschiedene physikalische Werte. Diese Werte können unabhängig voneinander eingestellt und als Quelle für den Schaltausgang verwendet werden. Nach Auswahl einer dieser drei Quellen kann der Sensorausgang mit einem IO-Link-Master konfiguriert werden; dabei sind die fünf Schritte zu befolgen, die in der nachstehenden Schaltausgang-Einrichtung dargestellt sind.

Wenn der Sensor vom Master getrennt wurde, wechselt er in den SIO-Modus und behält die letzte Konfigurationseinstellung bei.



Präsenzerkennung (BDC1)

Wenn sich ein metallisches Zielobjekt der Sensoroberfläche nähert, interagiert das vom Sensor erzeugte Magnetfeld mit dem Zielobjekt und der Sensor wechselt den Status.

Für die Präsenzerkennung (oder Abwesenheitserkennung) eines metallischen Objekts vor der Sensoroberfläche stehen folgende Einstellungen zur Verfügung:

BDC1

	(100%/62%) für IBS und ICS05
Sollwert 1 (SP1)	(100%/50%) für ICS08
	(100%/75%/50%/33%) für ICB
	(100%/62%) für IBS und ICS05
Sollwert 2 (SP2)	(100%/50%) für ICS08
	(100%/75%/50%/33%) für ICB
Schaltpunktlogik (invertiert/normal)	
Schaltpunktmodus (Einzelpunkt, Fenster, usw.)	
Schaltpunkthysterese	

Hinweise:

Sollwert 1 (SP1) und Sollwert 2 (SP2):

IBS- und ICS05-Induktivsensoren können auf 62% oder 100% des maximalen Nennschaltabstands eingestellt werden.

ICS08-Induktivsensoren können auf 50% oder 100% des maximalen Nennschaltabstands eingestellt werden.

ICB-Induktivsensoren können auf 33%, 50%, 75% oder 100% des maximalen Nennschaltabstands eingestellt werden.

B Frequenzerkennung (BDC2)

Messung der Erkennungsfrequenz.

Über die IO-Link-Schnittstelle lässt sich der Sensorausgang auf das Auslesen der Frequenz einstellen, um die Drehzahl eines rotierenden oder zyklischen Mechanismus (z. B. Wellen, Zahnräder, Nocken usw.) zu steuern. Bei Umschalten des Sensorausgangs auf "Fenstermodus" und Frequenzerkennung legen die beiden Sollwerte SP1 und SP2 den Frequenzbereich fest, in dem der Ausgang aktiviert wird. Außerhalb dieses Bereichs, bei Frequenzen unterhalb von SP1 und oberhalb von SP2, ist der Ausgang nicht aktiv; dadurch wird der zyklische Mechanismus bei Über- oder Unterdrehzahl geschützt.

BDC2

- > Sollwert 1 (SP1) (1–7000 Hz)
- > Sollwert 2 (SP2) (1–7000 Hz)
- Schaltpunktlogik (invertiert/normal)
- Schaltpunktmodus (Einzelpunkt, Fenster, usw.)
- Schaltpunkthysterese (1–7000 Hz)

Hinweise:

Sollwert 1 (SP1) und Sollwert 2 (SP2) können zwischen 1 Hz und 7000 Hz eingestellt werden.

Schaltpunktlogik:

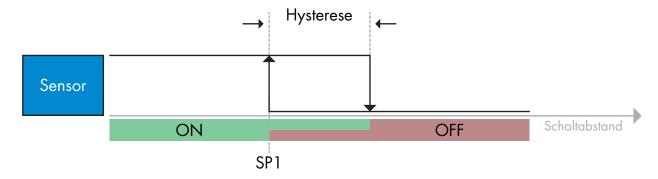
Die "Schaltpunktlogik" legt fest, wie die Schaltinformationen übertragen werden. Zur Wahl stehen:

- Normaler Betrieb
- Invertierter Betrieb

Hinweis:

Es wird nicht empfohlen, die Schaltpunktlogik im invertierten Betrieb zu verwenden, da dies alle nachfolgenden Funktionsblöcke betrifft. Ist ein Schließer/Öffner-Aufbau erforderlich, empfiehlt sich die Verwendung des dedizierten NO/NC-Funktionsblocks (4).

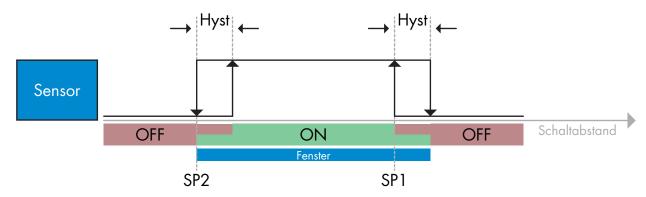
Schaltpunktmodus:


Die Schaltpunktmodus-Einstellung kann verwendet werden, um ein komplexeres Ausgabeverhalten zu erreichen. Für das Schaltverhalten von BDC1 und BDC2 können folgende Schaltpunktmodi ausgewählt werden:

Ausgeschaltet

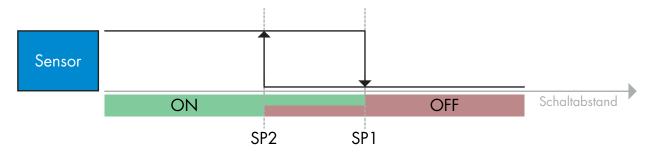
BDC kann deaktiviert werden, aber dies deaktiviert auch den Ausgang, wenn er im Quellenselektor ausgewählt wird (der logische Wert bleibt immer "O").

Einzelpunktmodus


Die Schaltinformation ändert sich unter Berücksichtigung der Hysterese, wenn der steigende oder fallende Messwert die im Sollwert SP1 definierte Schwelle kreuzt.

Beispiel für Präsenzerkennung – mit nicht invertierter Logik

Fenstermodus


Die Schaltinformation ändert sich unter Berücksichtigung der Hysterese, wenn der steigende oder fallende Messwert die im Sollwert SP1 und Sollwert SP2 definierten Schwellen kreuzt.

Beispiel für Präsenzerkennung – mit nicht invertierter Logik

Zweipunktmodus

Die Schaltinformation ändert sich, wenn der Messwert die im Sollwert SP1 definierte Schwelle kreuzt. Diese Änderung erfolgt nur bei steigenden Messwerten. Die Schaltinformation ändert sich auch, wenn der Messwert die im Sollwert SP2 definierte Schwelle kreuzt. Diese Änderung erfolgt nur bei fallenden Messwerten. Die Hysterese wird in diesem Fall nicht berücksichtigt.

Beispiel für Präsenzerkennung – mit nicht invertierter Logik

Hysterese-Einstellungen:

Bei der Präsenzerkennung (BDC1) kann die Hysterese zwischen Standard (ca. 10%) und Erweitert (ca. 20%) eingestellt werden.

Hinweise:

Eine erweiterte Hysterese bei der Präsenzerkennung ist im Allgemeinen nützlich, um Vibrationsoder EMV-Probleme in der Anwendung zu lösen.

Bei der Frequenzerkennung (BDC2) kann die Hysterese zwischen 1 Hz und 7000 Hz eingestellt werden.

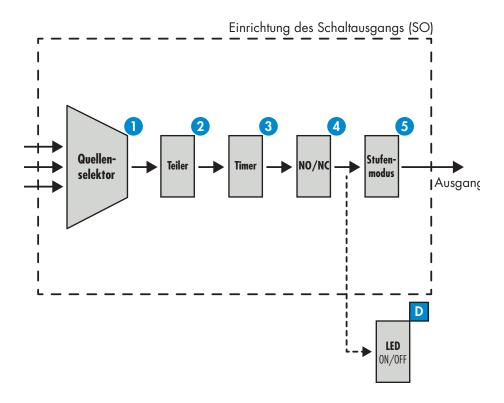
C Temperaturalarm (TA)

Der Sensor überwacht kontinuierlich die interne Temperatur. Mithilfe der Temperaturalarm-Einstellung kann der Sensor bei Überschreitung von Temperatur-Schwellenwerten einen Alarm auslösen.

Der Temperaturalarm hat zwei separate Werte, einen für die Einstellung der maximalen Temperatur und einen für die Einstellung der minimalen Temperatur.

Wenn ein Temperaturalarm ausgelöst wird, zeigt der Sensor dies sowohl über LED als auch über ein IO-Link-Ereignis an. Die Temperatur des Sensors lässt sich über die azyklischen IO-Link-Parameterdaten auslesen.

Hinweis:



Aufgrund der internen Erwärmung ist die vom Sensor gemessene Temperatur immer höher als die Umgebungstemperatur.

Der Unterschied zwischen der Umgebungstemperatur und der internen Temperatur wird durch die Einbauart des Sensors in der Anwendung beeinflusst. Wenn der Sensor in einer Metallhalterung montiert ist, fällt der Unterschied geringer aus als bei der Montage in einer Kunststoffhalterung.

2.3.4 Konfiguration des Schaltausgangs

Der Schaltausgang (SO) lässt sich durch Befolgen der Schritte 1 bis 5 konfigurieren.

Quellenselektor

Mit diesem Funktionsblock kann der Benutzer einen beliebigen der drei Eingangswerte (BDC1, BDC2 oder TA) dem Schaltausgang zuordnen.

2 Teiler

Mit dem Teiler kann der Benutzer festlegen, wie viele Aktivierungen zum Umschalten des Ausgangs erforderlich sind.

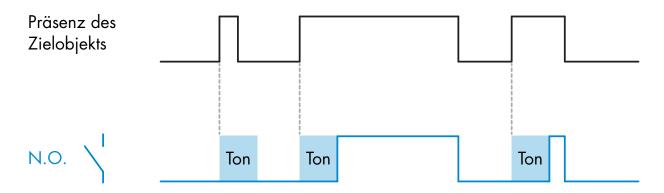
Standardmäßig ist dieser Wert auf 1 gesetzt und jede Aktivierung bewirkt ein Umschalten des Ausgangs. Wenn ein höherer Wert eingestellt ist, z. B. die Anzahl der Zähne an einem Zahnrad, wird der Ausgang bei jeder vollen Umdrehung des Zahnrads umgeschaltet. Auf diese Weise kann der Benutzer die tatsächliche Drehzahl eines Zahnrads direkt ablesen.

3 Timer

Mit dem Timer kann der Benutzer durch Bearbeiten der 3 Timer-Parameter verschiedene Timerfunktionen anwenden:

- Timer-Modus
- Timer-Maßstab
- Timer-Verzögerung

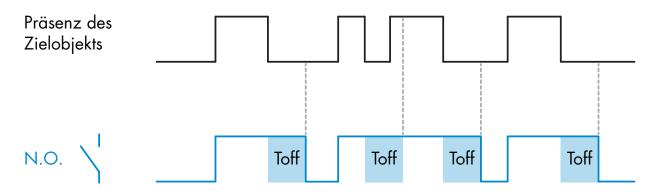
Timer-Modus:


Gibt an, welche Art von Timerfunktion auf den Schaltausgang angewendet wird. Es stehen folgende Möglichkeiten zur Verfügung:

Ausgeschaltet

Diese Option deaktiviert die Timerfunktion unabhängig davon, auf welche Werte der Timer-Maßstab und die Timer-Verzögerung eingestellt sind.

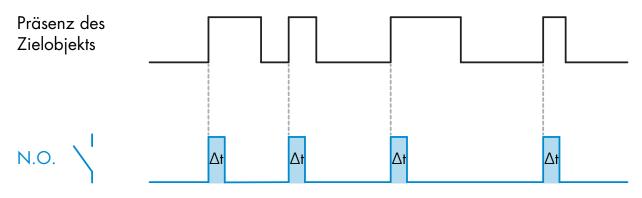
Einschaltverzögerung (T-on)


Die Aktivierung des Schaltausgangs erfolgt wie unten abgebildet nach der eigentlichen Sensorauslösung.

Beispiel mit Schließer-Ausgang

Ausschaltverzögerung (T-off)

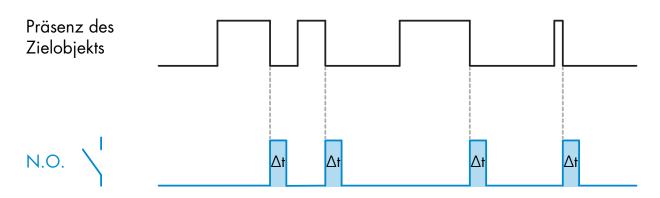
Die Deaktivierung des Schaltausgangs erfolgt wie unten abgebildet mit einer Verzögerung, ausgehend vom Zeitpunkt des Entfernens des Metallobjekts von der Sensorfront.


Beispiel mit Schließer-Ausgang

T-on- und T-off-Verzögerung

Wenn ausgewählt, werden bei der Generierung des Schaltausgangs sowohl die T-on- als auch die T-off-Verzögerung angewendet.

Einzelimpuls Vorderflanke


Jedes Mal, wenn ein Zielobjekt vor dem Sensor erkannt wird, erzeugt der Schaltausgang an der Vorderflanke der Erkennung einen Impuls von konstanter Länge. Siehe nachstehende Abbildung.

Beispiel mit Schließer-Ausgang

Einzelimpuls Rückflanke

Dieser Modus ist dem Einzelimpuls Vorderflanke ähnlich, der Schaltausgang wird jedoch wie unten abgebildet an der Rückflanke der Aktivierung umgeschaltet.

Beispiel mit Schließer-Ausgang

Timer-Maßstab:

Dieser Parameter legt fest, ob die unter Timer-Verzögerung (siehe unten) angegebene Verzögerung in Millisekunden, Sekunden oder Minuten zu interpretieren ist.

Timer-Verzögerung:

Dieser Parameter definiert die tatsächliche Dauer der Verzögerung. Die Verzögerung kann auf einen beliebigen ganzzahligen Wert zwischen 1 und 32767 eingestellt werden.

4 NO/NC-Betrieb

Mit dieser Funktion kann der Benutzer den Schaltausgang zwischen Schließerbetrieb (Normally Open) und Öffnerbetrieb (Normally Closed) umschalten.

Hinweis:

Es wird empfohlen, für den Öffner- oder Schließerbetrieb immer diesen Funktionsblock statt den unter BDC1 und BDC2 beschriebenen Inverterblock zu verwenden.

5 Ausgangsstufenmodus

In diesem Funktionsblock kann der Benutzer die Betriebskonfiguration des Schaltausgangs auswählen: Deaktiviert, NPN, PNP oder Push-Pull.

D LED-Aktivierung

Mit diesem Parameter kann der Benutzer die LED-Anzeige im Sensor deaktivieren.

2.3.5 Interne Sensorparameter

Neben den Parametern, die sich direkt auf die Konfiguration des Ausgangs auswirken, verfügt der Sensor auch über verschiedene interne Parameter, die für Einrichtungs- und Diagnosezwecke nützlich sind.

Ereigniskonfiguration:

Die Übertragung von Temperaturereignissen über die IO-Link-Schnittstelle ist im Sensor standardmäßig deaktiviert. Möchte der Benutzer über eventuelle kritische Temperaturen in der Sensoranwendung benachrichtigt werden, kann er mit diesem Parameter die folgenden 3 Ereignisse aktivieren oder deaktivieren:

- Temperatur-Fehlerereignis: Der Sensor erkennt eine Temperatur außerhalb des angegebenen Betriebsbereichs.
- Übertemperatur: Der Sensor erkennt eine Temperatur, die über dem eingestellten Temperaturalarm-Schwellenwert liegt.
- Untertemperatur: Der Sensor erkennt eine Temperatur, die unter dem eingestellten Temperaturalarm-Schwellenwert liegt.

Höchsttemperatur seit Start:

Dieser Parameter informiert den Benutzer über die höchste erkannte Temperatur seit dem Einschalten.

Mindesttemperatur seit Start:

Dieser Parameter informiert den Benutzer über die niedrigste erkannte Temperatur seit dem Einschalten.

Schaltfrequenz:

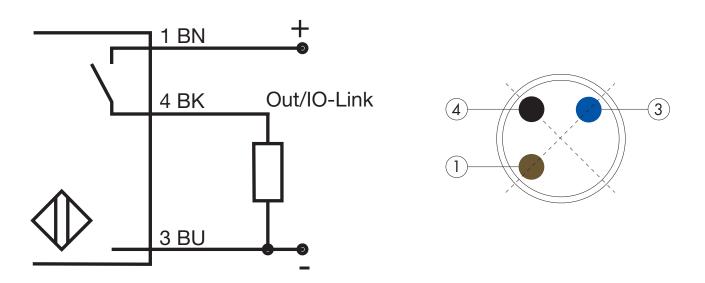
Aus diesem Parameter lässt sich die Häufigkeit auslesen, mit der der Sensor aktiviert wird.

Erkennungszähler:

In diesem Parameter ist die Anzahl der Erkennungen durch den Sensor seit dem Einschalten hinterlegt.

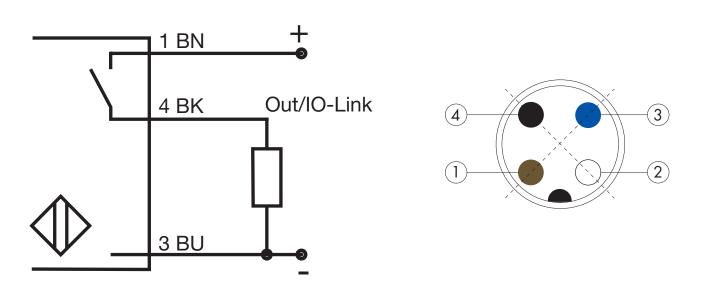
Anwendungsspezifisches Tag:

Der Benutzer kann eine Bezeichnung für den IO-Link-Sensor eingeben, um die Lage des Sensors in der Maschine leicht zu erkennen.


2.3.6 Prozessdatenvariable

Wenn der Sensor im IO-Link-Modus betrieben wird, kann der Benutzer auf die zyklische Prozessdatenvariable zugreifen. Standardmäßig enthalten die Prozessdaten nur Informationen über den Zustand des Schaltausgangs. Durch Ändern des Parameters Prozessdatenkonfiguration kann der Benutzer jedoch zusätzliche Informationen zum Status von BDC1, BDC2 und Temperaturalarm aktivieren. Auf diese Weise können mehrere Zustände im Sensor gleichzeitig beobachtet werden.

BIT O	BIT 1	BIT 2	BIT 3	BIT 415
SO	BDC1	BDC2	TA	Not used


3. Schaltpläne

IBS04, ICS05 und ICS08

PIN	Farbe	Signal	Beschreibung
1	Braun	10 bis 30 VDC	Geräteversorgung
3	Blau	GND	Masse
4	Schwarz	Last	IO-Link / Ausgang / SIO-Modus

ICB12, ICB18 und ICB30

PIN	Farbe	Signal	Beschreibung
1	Braun	10 bis 36 VDC	Geräteversorgung
3	Blau	GND	Masse
4	Schwarz	Last	IO-Link / Ausgang / SIO-Modus

4. Inbetriebnahme

50 ms nach Einschalten der Stromversorgung ist der Sensor betriebsbereit.

Wenn der Sensor an einen IO-Link-Master angeschlossen ist, wird keine zusätzliche Einstellung benötigt, und die IO-Link-Kommunikation startet automatisch, nachdem der IO-Link-Master eine Weckanforderung an den Sensor sendet.

5. Operation

5.1 Benutzerschnittstelle der Sensoren IBS04, ICS05 und ICS08

Die Sensoren IBS04, ICS05 und ICS08 verfügen über eine gelbe LED.

SIO-Modus:

Gelbe LED	Ausgang	Beschreibung
OFF	OFF	Schließer-Ausgang, Zielobjekt nicht präsent
		Öffner-Ausgang, Zielobjekt präsent
ON	ON	Schließer-Ausgang, Zielobjekt präsent
		Öffner-Ausgang, Zielobjekt nicht präsent
Blinkt -	f: 2 Hz	Kurzschluss oder Überlast
	f: 1 Hz	Temperaturalarm (wenn aktiviert)

IO-Link-Modus:

Gelbe LED	Modus	Beschreibung
Blinkt	ON für 0,75 s	— IO-Link-Kommunikation mit dem IO-Link-Master hergestellt
DIINKI	OFF für 0,075 s	10-Link-Kommunikation mit dem 10-Link-Masier nergestett

Möglichkeit, die LED zu deaktivieren

5.2 Benutzerschnittstelle der Sensoren ICB12, ICB18 und ICB30

Die Sensoren ICB12, ICB18 und ICB30 verfügen über je eine gelbe und eine grüne LED.

SIO-Modus:

Gelbe LED	Ausgang	Beschreibung
OFF	OFF	Schließer-Ausgang, Zielobjekt nicht präsent
		Öffner-Ausgang, Zielobjekt präsent
ON	ON	Schließer-Ausgang, Zielobjekt präsent
		Öffner-Ausgang, Zielobjekt nicht präsent
Blinkt —	f: 2 Hz	Kurzschluss oder Überlast
	f: 1 Hz	Temperaturalarm (wenn aktiviert)

Grüne LED	Ausgang	Beschreibung
OFF	OFF	Schalter ist nicht betriebsbereit
ON	ON	Schalter ist betriebsbereit

IO-Link-Modus:

Gelbe LED	Ausgang	Beschreibung
OFF/ON	SIO	Zeigt Status SIO falls weder Kurzschluss noch Temperaturfehler.
Blinkt —	f: 2 Hz	Kurzschluss oder Überlast
DIINKT	f: 1 Hz	Temperaturalarm (wenn aktiviert)

Möglichkeit, die LED zu deaktivieren

Grüne LED	Modus	Beschreibung
Blinkt —	ON für 0,75 s	− IO-Link-Kommunikation mit dem IO-Link-Master hergestellt
	OFF für 0,075 s	10-Link-Kommunikation mit dem 10-Link-Masier hergestellt

Möglichkeit, die LED zu deaktivieren

6. IODD-Datei und Werkseinstellung

6.1 IODD-Datei eines IO-Link-Geräts

Alle Funktionen, Geräteparameter und Einstellwerte des Sensors werden in einer I/O-Gerätebeschreibungsdatei (IODD-Datei) gesammelt. Die IODD-Datei wird benötigt, um die Kommunikation zwischen dem IO-Link-Master und dem Sensor herzustellen.

Jeder Anbieter eines IO-Link-Geräts muss diese Datei erstellen und auf der Website zum Download bereitstellen. Die Datei ist komprimiert, und muss daher unbedingt entpackt werden.

Die IODD-Datei enthält:

- Prozess- und Diagnosedaten
- Beschreibung der Parameter mit Namen, zulässigem Wertebereich, Art der Daten und Adresse (Index und Subindex)
- Kommunikationseigenschaften, einschließlich der minimalen Zykluszeit des Geräts
- Geräteidentität, Artikelnummer, Geräteabbildung und Herstellerlogo

IODD-Dateien sind auf der Website von Carlo Gavazzi erhältlich: www.

6.2 Werkseinstellung

Die IO-Link-Versionen der Induktivsensoren IBSO4, ICSO5, ICSO8, ICB12, ICB18 und ICB30 haben die folgenden Werkseinstellungen:

- "Einzelpunktmodus"-Betrieb
- PNP, NO
- Schaltabstand: 100%
- Schalthysterese: Standard
- LED (bei ICB-Sensor: LEDs) ein
- Präsenzerkennung (BDC1)
- Teiler ist eingestellt auf 1
- Alle Timer sind deaktiviert

7. Anhang

7.1 Abkürzunge	7.1 Abkürzungen							
R/W	Lesen und Schreiben (Read and Write)							
R	Nur Lesen (Read Only)							
W	Nur Schreiben (Write Only)							
StringT (X)	ASCII-Zeichenfolge, X Zeichen lang							
IntegerTX	Ganzzahl mit Vorzeichen, X Bit lang							
UIntegerTX	Ganzzahl ohne Vorzeichen, X Bit lang							
OctetStringT (X)	Octet-Array, X Octet lang							
PDV	Prozessdatenvariable							

7.2 IO-Link-Geräteparameter für IBS04, ICS05 und ICS08

Geräteparameter

Parametername	Index Hex(Dec)	Subindex Hex(Dec)	Zugriff	Standardwert	Datenbereich	Datentyp (Länge)
Lieferantenname	0x10(16)	0x00(0)	R	Carlo Gavazzi	-	StringT (13)
Lieferantentext	0x11(1 <i>7</i>)	0x00(0)	R	www.gavazziautomation.com	-	StringT (25)
Produktbezeichnung	0×12(18)	0×00(0)	R	(Sensorname) z. B. ICS05S23F15A2IO	-	StringT (20)
Produkt-ID	0×13(19)	0×00(0)	R	(EAN-Code des Produkts) z. B. 5709870393070	-	StringT (13)
Produkttext	0x14(20)	0x00(0)	R	Induktive Näherungsschalter	-	StringT (26)
Seriennummer	0×15(21)	0x00(0)	R	(Eindeutige Seriennummer) z. B. LR24101830834	-	StringT (13)
Hardware-Version	0x16(22)	0×00(0)	R	(Hardware-Version) z. B. v01.00	-	StringT (6)
Firmware-Version	0×17(23)	0x00(0)	R	(Software-Version) z. B. v01.00	-	StringT (6)
Anwendungsspezifisches Tag	0x18(24)	0x00(0)	R/W	***	Beliebige Zeichenfolge mit bis zu 32 Zeichen	StringT (32)
Fehleranzahl	0x20(32)	0x00(0)	R	-	0 bis 65535	UIntegerT16
Gerätestatus	0x24(36)	0x00(0)	R	-	0 = Gerät arbeitet einwandfrei 2 = Außerhalb der Spezifikation 4 = Störung	UIntegerT8
Detaillierter Gerätestatus						
Temperaturfehler		0x01(1)	R	-	-	OctetStringT (3)
Temperaturü- berschreitung	0×25(37)	0x02(2)	R	-	-	OctetStringT (3)
Temperaturun- terschreitung		0x03(3)	R	-	-	OctetStringT (3)
Prozessdateneingabe	0x28(40)	0x00(0)	R	-	0 bis 15	UIntegerT16

Output setup parameters

Parametername	Index Hex(Dec)	Subindex Hex(Dec)	Zugriff	Standardwert	Datenbereich	Datentyp (Länge)
Sollwert BDC1						
Sollwert 1	020(40)	0x01(1)	R/W	1	0 = 62 % Schaltbereich (IBS, ICS05) 0 = 50 % Schaltbereich (ICS08) 1 = 100 % Schaltbereich	IntegerT16
Sollwert 2	0x3C(60)	0x02(2)	R/W	0	0 = 62 % Schaltbereich (IBS, ICS05) 0 = 50 % Schaltbereich (ICS08) 1 = 100 % Schaltbereich	IntegerT16
Schaltpunkt BDC1						
Logik		0x01(1)	R/W	0	0 = Normaler Betrieb BDC1 1 = Invertierter Betrieb BDC1	UIntegerT8
Modus	0x3D(61)	0x02(2)	R/W	1	0 = Deaktiviert 1 = Betriebsart Ein Grenzwert 2= Fensterbetrieb 3 = Betriebsart Zwei Grenzwerte	UIntegerT8
Hysterese		0x03(3)	R/W	О	0 = Standardhysterese ≈ 10% 1 = Extended hysteresis ≈ 20%	IntegerT16
Sollwert BDC2					,	
Sollwert 1	0.054401	0x01(1)	R/W	100	1 bis 7000 Hz	IntegerT16
Sollwert 2	0x3E(62)	0x02(2)	R/W	50	1 bis 7000 Hz	IntegerT16
Schaltpunkt BDC2						
Logik		0x01(1)	R/W	0	0 = Normaler Betrieb BDC2 1 = Invertierter Betrieb BDC2	UIntegerT8
Modus	0x3F(63)	0x02(2)	R/W	1	0 = Deaktiviert 1 = Betriebsart Ein Grenzwert 2= Fensterbetrieb 3 = Betriebsart Zwei Grenzwerte	UIntegerT8
Hysterese		0x03(3)	R/W	10	1 bis 7000 Hz	IntegerT16
SIO Kanal 1						
Stufenmodus		0x01(1)	R/W	1	0 = Deaktivierter Ausgang 1 = PNP Ausgang 2 = NPN Ausgang 3 = Gegentakt Ausgang	UIntegerT8
Quelle		0x02(2)	R/W	1	1 = BDC1 2 = BDC2 5 = Temperaturalarm	UIntegerT8
Timermodus	0x40(64)	0x03(3)	R/W	0	0 = deaktiviert 1 = Einschaltverzögerung 2 = Ausschaltverzögerung 3 = Ein-/Ausschaltverzögerung 4 = Einschaltwischend 5 = Ausschaltwischend	UIntegerT8
Timerskala		0x04(4)	R/W	0	0 = Millisekunden 1 = Sekunden 2 = Minuten	UIntegerT8
Delay Duration		0x05(5)	R/W	100	1 bis 32767	IntegerT16
Teiler		0x06(6)	R/W	1	1 bis 32767	IntegerT16
NO/NC-Betrieb		0x08(8)	R/W	0	0 = Schließer 1 = Öffner	UIntegerT8

Internal sensor parameters

Parametername	Index Hex(Dec)	Subindex Hex(Dec)	Zugriff	Standardwert	Datenbereich	Datentyp (Länge)
Prozessdatenkonfiguration						
Schaltausgang (SO)		0x02(2)	R/W	1	0 = SO not shown in PDV 1 = SO shown in PDV	
Binärer Datenkanal 1 (BDC1)	0.44(70)	0x04(4)	R/W	0	0 = BDC1 not shown in PDV 1 = BDC1 shown in PDV	D IT14
Binärer Datenkanal 2 (BDC2)	0x46(70)	0x05(5)	R/W	0	0 = BDC2 not shown in PDV 1 = BDC2 shown in PDV	RecordT16
Temperaturalarm (TA)		0x08(8)	R/W	0	0 = TA not shown in PDV 1 = TA shown in PDV	
Temperaturalarm-Grenzwert						
Oberer Grenzwert	040/70\	0x01(1)	R/W	100	-32768 bis 32767 °C	IntegerT16
Unterer Grenzwert	0x48(72)	0x02(2)	R/W	-30	-32768 bis 32767 °C	IntegerT16
Ereigniskonfiguration						
Ereignis Temperaturfehler		0x02(2)	R/W	0	0 = Fehlerereignis Inaktiv 1 = Fehlerereignis Aktiv	
Ereignis Temperaturüberschreitung	0x4A(74)	0×03(3)	R/W	0	0 = Warnereignis Inaktiv 1 = Warnereignis Aktiv	RecordT16
Ereignis Temperaturunterschreitung		0x04(4)	R/W	0	0 = Warnereignis Inaktiv 1 = Warnereignis Aktiv	
LED-Anzeige	0x4E(78)	0×00(0)	R/W	1	0 = LED-Anzeige Inaktiv 1 = LED-Anzeige Aktiv	UIntegerT8
Höchsttemperatur seit Einschalten	0xCD(205)	0x00(0)	R	-	-32768 bis 32767 °C	IntegerT16
Tiefsttemperatur seit Einschalten	0xCE(206)	0×00(0)	R	-	-32768 bis 32767 °C	IntegerT16
Aktuelle Temperatur	0xCF(207)	0x00(0)	R	-	-32768 bis 32767 °C	IntegerT16
Schaltfrequenz	0xD0(208)	0x00(0)	R	-	0 bis 32767 Hz	IntegerT16
Zähler für Zustandsänderung	0xD2(210)	0x00(0)	R	-	0 bis 2147483647	IntegerT32

7.3 IO-Link-Geräteparameter für ICB12, ICB18 und ICB30

Geräteparameter

Parametername	Index Hex(Dec)	Subindex Hex(Dec)	Zugriff	Standardwert	Datenbereich	Datentyp (Länge)
Lieferantenname	0×10(16)	0×00(0)	R	Carlo Gavazzi	-	StringT (13)
Lieferantentext	0x11(17)	0x00(0)	R	www.gavazziautomation.com	-	StringT (25)
Produktbezeichnung	0×12(18)	0x00(0)	R	(Sensorname) z. B. ICB12S30F04A2IO	-	StringT (20)
Produkt-ID	0×13(19)	0×00(0)	R	(EAN-Code des Produkts) z. B. 5709870393070	-	StringT (13)
Produkttext	0x14(20)	0x00(0)	R	Induktive Näherungsschalter	-	StringT (26)
Seriennummer	0×15(21)	0x00(0)	R	(Eindeutige Seriennummer) z. B. LR24101830834	-	StringT (13)
Hardware-Version	0x16(22)	0×00(0)	R	(Hardware-version) z. B. v01.00	,	
Firmware-Version	0x17(23)	0×00(0)	R	(Software-version) z. B. v01.00	-	StringT (6)
Anwendungsspezifisches Tag	0×18(24)	0×00(0)	R/W	***	Beliebige Zeichenfolge mit bis zu 32 Zeichen	StringT (32)
Fehleranzahl	0x20(32)	0x00(0)	R	-	0 bis 65535	UIntegerT16
Gerätestatus	0x24(36)	0x00(0)	R	-	0 = Gerät arbeitet einwandfrei 2 = Außerhalb der Spezifikation 4 = Störung	UIntegerT8
Detaillierter Gerätestatus						
Temperaturfehler		0x01(1)	R	-	-	OctetStringT (3)
Temperaturü- berschreitung	0×25(37)	0x02(2)	R	-	-	OctetStringT (3)
Temperaturun- terschreitung		0×03(3)	R	-	-	OctetStringT (3)
Prozessdateneingabe	0x28(40)	0x00(0)	R	-	0 bis 15	UIntegerT16

Output setup parameters

Parametername	Index Hex(Dec)	Subindex Hex(Dec)	Zugriff	Standardwert	Datenbereich	Datentyp (Länge)
Sollwert BDC1						
Sollwert 1	0.20(40)	0x01(1)	R/W	3	0 = 33 % Schaltbereich 1 = 50 % Schaltbereich 2 = 75 % Schaltbereich 3 = 100 % Schaltbereich	IntegerT16
Sollwert 2	0x3C(60)	0x02(2)	R/W	0	0 = 33 % Schaltbereich 1 = 50 % Schaltbereich 2 = 75 % Schaltbereich 3 = 100 % Schaltbereich	IntegerT16
Schaltpunkt BDC1						
Logik		0×01(1)	R/W	0	0 = Normaler Betrieb BDC1 1 = Invertierter Betrieb BDC1	UIntegerT8
Modus	0x3D(61)	0x02(2)	R/W	1	0 = Deaktiviert 1 = Betriebsart Ein Grenzwert 2= Fensterbetrieb 3 = Betriebsart Zwei Grenzwerte	UIntegerT8
Hysterese		0x03(3)	R/W	0	0 = Standardhysterese ≈ 10% 1 = Extended hysteresis ≈ 20%	IntegerT16
Sollwert BDC2						
Sollwert 1	0.05((0)	0x01(1)	R/W	100	1 bis 7000 Hz	IntegerT16
Sollwert 2	0x3E(62)	0x02(2)	R/W	50	1 bis 7000 Hz	IntegerT16
Schaltpunkt BDC2						
Logik		0x01(1)	R/W	0	0 = Normaler Betrieb BDC2 1 = Invertierter Betrieb BDC2	UIntegerT8
Modus	0x3F(63)	0×02(2)	R/W	1	0 = Deaktiviert 1 = Betriebsart Ein Grenzwert 2= Fensterbetrieb 3 = Betriebsart Zwei Grenzwerte	UIntegerT8
Hysterese		0x03(3)	R/W	10	1 bis 7000 Hz	IntegerT16
SIO Kanal 1						
Stufenmodus		0x01(1)	R/W	1	0 = Deaktivierter Ausgang 1 = PNP Ausgang 2 = NPN Ausgang 3 = Gegentakt Ausgang	UIntegerT8
Quelle		0x02(2)	R/W	1	1 = BDC1 2 = BDC2 5 = Temperaturalarm	UIntegerT8
Timermodus	0x40(64)	0x03(3)	R/W	0	0 = deaktiviert 1 = Einschaltverzögerung 2 = Ausschaltverzögerung 3 = Ein-/Ausschaltverzögerung 4 = Einschaltwischend 5 = Ausschaltwischend	UIntegerT8
Timerskala		0x04(4)	R/W	0	0 = Millisekunden 1 = Sekunden 2 = Minuten	UIntegerT8
Delay Duration		0x05(5)	R/W	100	1 bis 32767	IntegerT16
Teiler		0x06(6)	R/W	1	1 bis 32767	IntegerT16
NO/NC-Betrieb		0x08(8)	R/W	0	0 = Schließer 1 = Öffner	UIntegerT8

Internal sensor parameters

Parametername	Index	Subindex	Zugriff	Standardwert	Datenbereich	Datentyp
	Hex(Dec)	Hex(Dec)				(Länge)
Prozessdatenkonfiguration						
Schaltausgang (SO)		0x02(2)	R/W	1	0 = SO not shown in PDV 1 = SO shown in PDV	
Binärer Datenkanal 1 (BDC1)	044/70)	0x04(4)	R/W	0	0 = BDC1 not shown in PDV 1 = BDC1 shown in PDV	RecordT16
Binärer Datenkanal 2 (BDC2)	0x46(70)	0x05(5)	R/W	0	0 = BDC2 not shown in PDV 1 = BDC2 shown in PDV	Recordito
Temperaturalarm (TA)		0x08(8)	R/W	0	0 = TA not shown in PDV 1 = TA shown in PDV	
Temperaturalarm-Grenzwert						
Oberer Grenzwert		0x01(1)	R/W	100	-32768 bis 32767 °C	IntegerT16
Unterer Grenzwert	0x48(72)	0x02(2)	R/W	-30 for cable variants -45 for plug variants	-32768 bis 32767 °C	IntegerT16
Ereigniskonfiguration						
Ereignis Temperaturfehler		0x02(2)	R/W	0	0 = Fehlerereignis Inaktiv 1 = Fehlerereignis Aktiv	
Ereignis Temperaturüberschreitung	0x4A(74)	0x03(3)	R/W	0	0 = Warnereignis Inaktiv 1 = Warnereignis Aktiv	RecordT16
Ereignis Temperaturunterschreitung		0x04(4)	R/W	0	0 = Warnereignis Inaktiv 1 = Warnereignis Aktiv	
LED-Anzeige	0x4E(78)	0x00(0)	R/W	1	0 = LED-Anzeige Inaktiv 1 = LED-Anzeige Aktiv	UIntegerT8
Höchsttemperatur seit Einschalten	0xCD(205)	0x00(0)	R	-	-32768 bis 32767 °C	IntegerT16
Tiefsttemperatur seit Einschalten	0xCE(206)	0x00(0)	R	-	-32768 bis 32767 °C	IntegerT16
Aktuelle Temperatur	0xCF(207)	0x00(0)	R		-32768 bis 32767 °C	IntegerT16
Schaltfrequenz	0xD0(208)	0x00(0)	R	-	0 bis 32767 Hz	IntegerT16
Zähler für Zustandsänderung	0xD2(210)	0x00(0)	R	-	0 bis 2147483647	IntegerT32